Data Science at Etsy

I am Head of Data Science at Etsy Inc., an E-commerce marketplace with 45 million items and a community of 1.9 million active sellers and 31.7 million active buyers.

As a manager, I grow and manage a team of nearly 15 talent data scientists (Master and PhD level), located in New York City and San Francisco offices, with backgrounds in Computer Science, Operation Research, Electronic Engineering, Statistics, Economics, Physics and others, including graduates from Stanford University, Cornell University, University of Chicago, Carnegie Mellon University and others.

As a technical leader, I help to drive Machine Learning and Data Science vision at Etsy and deliver cutting-edge scientific solutions for Search & DiscoveryPersonalization & Recommendation and Computational Advertising by utilizing a wide range of technologies including deep learning, probabilistic modeling, image understanding (computer vision), user profiling, query understanding, text mining and others.

As a researcher, I have published papers in all major international conferences in data mining, machine learning and information retrieval, such as SIGIR, WWW, KDD, CIKM, AAAI, WSDM, RecSys and ICML with more than 2,300 citations (H-index: 18), winning WWW 2011 Best Poster Paper Award, WSDM 2013 Best Paper Nominated and RecSys 2014 Best Paper Award, serving as program committee members in KDDWWW, SIGIR, WSDM, AAAIEMNLP, ICWSM, ACL, CIKM, IJCAI as well as several workshops. In addition, I constantly review articles in most prestige journals such as DMKD, TKDD, TIST, TIS, and TKDE. I have co-founded User Engagement Optimization Workshop, which has been held in conjunction with CIKM 2013 and with KDD 2014.

Learn more about us and we are hiring:

Recent Talks

Recent Papers

  • 2018-01 “Buzzsaw: A System for High Speed Feature Engineering” in SysML 2018. [PDF]
  • 2017-08 “Returning is Believing: Optimizing Long-term User Engagement in Recommender Systems” in CIKM 2017. [PDF]
  • 2017-06 “An Ensemble-based Approach to Click-Through Rate Prediction for Promoted Listings at Etsy” in AdKDD and TargetAd 2017 workshop at KDD 2017. [PDF]
  • 2017-06 “A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation” in RecSys 2017. [PDF]
  • 2017-06 “Joint Text Embedding for Personalized Content-based Recommendation” in ArXiv. [PDF]
  • 2017-05 “On Sampling Strategies for Neural Network-based Collaborative Filtering” in KDD 2017. [PDF] [Code]
  • 2016-12 “GB-CENT: Gradient Boosted Categorical Embedding and Numerical Trees” in WWW 2017. [PDF]

Short Bio

Previously, I was Senior Manager of Research at Yahoo Research from 2013 to 2016, leading science efforts for Personalization and Search Sciences. Our team helped to drive science solutions for a wide range of products including Yahoo Homepage News StreamsYahoo Aviate App RecommendationYahoo Tumblr Blog RecommendationYahoo Video RecommendationYahoo Assistant/Bot Platform and Yahoo Mobile Search. Prior to Yahoo Research, I was a research assistant in Department of Computer Science and Engineering at Lehigh University, where I was a member of WUME lab from 2008 to 2013, working with Brian D. Davison. I obtained my Ph.D. (2013), M.S. (2010) from Lehigh University and B.S. (2007) from Beijing University of Chemical Technology, all in Computer Science.