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ABSTRACT
Feature-based collaborative filtering models, such as state-
of-the-art factorization machines and regression-based la-
tent factor models, rarely consider features’ structural infor-
mation, ignoring the heterogeneity of inter-type and intra-
type relationships. Näıvely treating all feature pairs equally
would potentially deteriorate the overall recommendation
performance. In addition, human prior knowledge and other
hierarchical or graphical structures are often available for
some features, e.g., the country-state-city hierarchy for ge-
ographic features and the topical taxonomy for article fea-
tures. It is a challenge to utilize the prior knowledge to
further boost performance of state-of-the-art models. In
this paper we employ rich features from both user and
item sides to enhance latent factors learnt from interaction
data, uncovering hidden structures from features’ relation-
ships and learning sparse pairwise and tree structural con-
nections among features. Our framework borrows the mod-
eling strengh from both structural sparsity modeling and la-
tent factor models. Experiments on a real-world large-scale
recommendation data set demonstrated that the proposed
model outperforms several strong state-of-the-art baselines.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services

Keywords
Structured Sparse Regression, Structured Sparse Feature
Graph Learning, Hierarchical Sparse Coding, Structured
Sparse Coding, Feature-based Collaborative Filtering

1. INTRODUCTION
Feature based latent factor models have received increas-

ing attention in recent years due to its capability to effec-
tively solve the cold-start problem. There have been many
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feature based collaborative filtering (CF) models proposed re-
cently, which can be grouped into two categories. The first
type of models includes all variants of latent factor mod-
els (LFM) which have been proven as an effective approach
to personalization and recommender systems. The core of
LFM is to learn user-specific and item-specific features from
user-item interactions and utilize these features for future
predictions/recommendations. State-of-the-art LFM exploits
low-rank latent spaces of users and features and treats latent
factors that are learnt from user-item historical data as fea-
tures. This type of models has gained significant successes
in a number of applications, including the Netflix competi-
tion. The second category is the factorization machine (FM),
which explicitly learns the mapping function from features
to rating score circumventing the dependency on user/item
latent factors as in the latent factor models, resulting in an
effective model for the cold start problem [9].
Although these feature-based CF models have been shown

to be effective, they do not utilize the feature structure in-
formation. For example, conventional latent factor models
(e.g., matrix factorization or tensor factorization models)
like RLFM [1, 2] learn mapping functions from user/item fea-
tures to user/item latent vectors assuming the features have
a flat first-order structure. Later, [10] showed that this kind
of mapping can be extended to any non-linear models. Al-
though the formalism is flexible, it leaves too much room
for practitioners to choose which non-linear model to use
for a particular application. Also, it is hard to incorporate
human prior knowledge on the feature structure into the
framework, unless through careful feature engineering, and
the proposed inference algorithm is difficult to use in large-
scale settings. Similar to RLFM, Gantner et al. [4] proposed
a model to explicitly learn the mapping function from fea-
tures to latent factors, resulting in an effective model for
the cold start problem. But it still makes the flat first-order
feature structure assumption. In the other line of work,
Rendle et al. [9] proposed a more compact model called fac-
torization machine FM. Basically FM is a second-order regres-
sion model which directly maps the user-item-event concate-
nated features to rating score by learning the implicit map-
ping functions from features to latent factors, resulting in
an effective model for the cold start problem. However, the
issue of encoding structural human prior information still
boils down to sophisticated feature engineering and it’s not
clear how to incorporate the heterogenous feature structures
into model training to enhance the rating prediction perfor-
mance. Though FM considers the second-order feature struc-
ture, it simply uses all the feature pairs for prediction. Quite



a lot of work in sparse coding area have shown that many
signals tend to have a sparse representation from basic com-
ponents in nature, and a sparse model often outperforms a
dense model and also has the variable selection effect. In-
spired by this, a sparse model that uses an appropriate sub-
set of feature pairs might have a better performance.

In practices, human prior knowledge or explicit structure
information about these features is also sometimes available.
For example, the topical categories on news articles may nat-
urally be organized into hierarchies or graphs. Another good
example would be demographical information about users,
especially their geo-locations that are aligned with countries,
states and cities, defined in real-world geo-political settings.
These prior knowledge and structures are invaluable infor-
mation for better user understanding and profiling and even-
tually better recommendation results. However, it is not
straightforward to encode this kind of structural prior knowl-
edge into state-of-the-art recommendation models like RLFM

and FM. One approach might be to construct features captur-
ing these structures and embed them into regression models.
But the interplay between an optimal way to construct such
features and train a better regression model based on these
features to map to latent features becomes non-trivial in
this case. Some previous work has been proposed to impose
structural information on latent variable models, which are
not necessarily directed graphical models. For instance, He
et al. [5] proposed a general learning framework which in-
duces sparsity on the undirected graphical model imposed
on the vector of latent factors. Although the paper shares a
similar idea with our framework, their work cannot handle
heterogeneous types of features and complex dependencies.
Also, it is hard to link their work to state-of-the-art LFM

used in CF settings. Along the line of undirected graphical
models, Min et al. [8] proposed sparse high-order Boltzmann
machines, aiming to capture dependencies between latent
variables. Again, it is not obvious to plug the model into
state-of-the-art CF approaches.

In this paper, we propose a structured sparse second-order
regression model with structural prior knowledge in a prin-
cipled way. The notion of types of features is introduced
such that different types of features would have different
structures (e.g., topical categories versus geographical loca-
tions). We consider two kinds of structures. For inter-typed
features (which are of different kinds), the model is able to
learn sparse relationships between different types of features
(e.g., age and gender). For intra-typed features (which are in
the same kind) that have a hierarchy (tree), e.g., we have the
country-state-city hierarchical tree for the geo-location fea-
ture terms, the model learns a sparse hierarchical structure
on the tree such that if a parent feature edge (or interchange-
ably a feature pair) is selected, then all its descendant edges
should be selected as well, and if a parent edge is removed
then all its descendant edges should be removed too.

2. STRUCTURED SPARSE REGRESSION
We model the rating score of an event by a user on an

item by a second-order polynomial regression

ŷ = b+ 〈w,x〉+
p∑

i=1

p∑
j=i+1

αijx[i]x[j], (1)

where b is the global bias for all events, w is the first-order
weights, and p is the feature size. x is the concatenated fea-
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Figure 1: An illustration of hierarchy for features of
the same type. Each node corresponds to a feature
node, and each edge a feature pair.

ture vector for the user-item-event triplet as is used in FM.
Apparently, we directly use a pair-wise weight factor αij for
each feature pair (or edge) (i, j) rather than the inner prod-
uct of latent factors vi and vj in FM because it would be eas-
ier to learn the structures by imposing structured sparsity-
inducing norm regularization, otherwise we would need to
minimize the approximation error to push αij ≈ 〈vi,vj〉 for
any activated feature pair (i, j). Actually the feature size is
relatively small w.r.t. the data size which is usually the case
for practical large-scale machine learning problems, thus the
complexity of O(p2) should not be the bottleneck.

2.1 Structured Sparse Priors with Heteroge-
neous Features

As we discussed before, heterogeneous feature types exist
for the user-item-event triplet. For users, it is comparatively
easy to obtain certain prior structures for some types of fea-
tures (e.g., geographical locations), while it is not straight-
forward for other types (e.g., age and gender).

We partition the features into different types (groups).
Let T denote the number of feature types for users and
G = {g1, g2, . . . , gT } the non-overlapping grouping of fea-
ture indices, i.e., partition of feature indices by feature
types. gt is the set of feature indices for feature type t.
Denote pt the number of features in feature type t, so that
we have gt =

{∑t−1
s=1 ps + 1,

∑t−1
s=1 ps + 2, . . . ,

∑t−1
s=1 ps + pt

}
and

∑T
s=1 ps = p. If we differentiate different types of fea-

tures, the second-order term in Equation 1 can be further
expanded as

T∑
t=1

T∑
t′=t+1

∑
k∈gt

∑
k′∈gt′

αkk′x[k]x[k′]

︸ ︷︷ ︸
Inter−type Edges

+

T∑
t=1

∑
k,k′∈gt
k �=k′

αkk′x[k]x[k′]

︸ ︷︷ ︸
Intra−type Edges

.

As we partition features into different types, edges of the
whole pair-wise feature graph are divided into two parts as
well: inter-type edges and intra-type edges. Intra-type edges
are initialized from prior knowledge if we have prior hierar-
chies while inter-type edges are learned. Figure 1 gives an
example of the hierarchy for features of one type.

We impose a sparse prior on all inter-typed feature edges,
whereas in order to learn sparse hierarchical structure on
certain intra-typed feature edges (e.g., geo features), we cast
the problem into a hierarchical sparse coding problem by us-
ing structured sparsity-inducing norms as regularization [11,
6]. The hierarchical sparsity-inducing regularization has a
desirable property that if one edge is included then all its



ancestor edges should all be included as well. Equivalently,
if one edge is removed from the tree, then all its descendant
edges should all be removed too. We can also view the edge
hierarchy as pre-ordering of edges, i.e., the parent edge has
to be pre-ordered before its child edges. For intra-type edges
with hierarchy, we use tree-structured set of groups defined
as follows [6].

Definition 1. A set of edge groups G � {g}g∈G is said

to be tree-structured in {1, . . . , |E|} if
⋃

g∈G g = {1, . . . , |E|}
and if for all g, h ∈ G, (g ∩ h �= ∅) ⇒ (g ⊆ h or h ⊆ g), where
E is the set of intra hierarchical feature graph edges. For
such a set of groups, there exists a (non-unique) total order
relation � such that:

g � h ⇒ {g ⊆ h or g ∩ h = ∅} .

We can also say that the tree-structured set of groups con-
sists of all the subtrees. As we can see from the defini-
tion, we can expand this tree-structured set of groups by
adding inter edge and self-edge groups, where each inter edge
and self-edge forms a singleton edge group, without affect-
ing the total order relation since they are non-overlapping
sets of singleton groups isolated from the tree-structured
set of groups. We thus propose to use a mixed singleton
and tree-structured sparsity-inducing norm T (α) imposed
on the whole feature graph edge weight vector α which is

defined as T (α)
Δ
=

∑
g∈G

∥∥α|g
∥∥
2
, where α|g is the vector com-

posed of elements of α for indices in edge group g.

2.2 Optimization Problem
Adding the standard l2-norm regularization on b and w,

we want to minimized the regularized risk on all N events

min
1

N

N∑
n=1

‖yn − ŷn‖2 + λ
∑

θ∈{b,wi}
θ2 + νT (α) , (2)

where λ and ν are positive real number parameters for reg-
ularization. b and wi can be updated by alternating least-
squares (ALS) optimization by

θ∗ =

θ
N∑

n=1

h2
θ (xn) +

N∑
n=1

hθ (xn) en

N∑
n=1

h2
θ (xn) +Nλ

, (3)

where en = yn − ŷn is the training error of the nth event,
and

hθ (x) =
∂ŷ (x)

∂θ
=

{
1, if θ is b
x[i], if θ is wi

.

We apply proximal gradient descent to update α|g for each
group g in a block coordinate descent strategy where the key
step is to compute the proximal mapping w.r.t. l2-norm

α|g
k = ProxNν

L
‖·‖2

(
α|g

k−1 − 1

L
∇α|gf

(
α|g

k−1
))

,

where f
(
α|g

)
= 1

N

N∑
n=1

‖ŷn − yn‖2, and L is the lipschitz

constant for f . To speed up the algorithm, we need to esti-
mate L to avoid line search. By applying Gersgorin theorem,

it can be proved that L = 2

∥∥∥∥ N∑
n=1

hα|g (xn)hα|g (xn)
T

∥∥∥∥
∞
.

Note that en should be updated accordingly each time b, w,
and α|g are updated to guarantee the correctness of the algo-

rithm. The final algorithm has an O(Np2) time complexity
and an O(p2 +Nz) space complexity where z is the average
number of non-zero elements for all event feature vectors.

3. EXPERIMENTS
Dataset: We use Yahoo’s homepage stream data as a

running example of our experiments. A dataset from a sam-
ple of traffic of users from six international sites, including
United Kingdom, France, Italy, Germany, Spain and Ireland
of Yahoo homepage streams is collected. The dataset con-
tains users’ interactions, clicks and views, on articles shown
in the stream section from May 1st, 2014 to May 16th, 2014.
We group users by time periods and construct sessions of
all items a user consumed in a particular time period (e.g.,
months, day, hour and etc.). Mimicking real settings of on-
line systems, events from May 1st to May 9th are used to
build the training set, and the remaining events are used to
build the test set. The training set has 4.75M events based
on the interaction between between 37, 668 users and 30, 260
news items. The test set has 4.46M events based on the in-
teraction between between 45, 422 users and 25, 569 news
items.

Features: The critical part of our proposed framework,
with other feature-based CF is to utilize different types of
user and item features. Therefore, in addition to the user
interaction data, the dataset also includes the user-side fea-
tures and item-side features. The user-side feature set con-
sists of three components:

• Gender: Categorical, no prior structure, three di-
mensional (e.g., male, female and unknown).

• Age: Categorical, no prior structure, ten dimensional
age groups.

• Geographical areas: Categorical, a tree-like prior
structure, including countries, states and cities. which yields
6744-dimension user-side features. Note that not all features
have prior structures. The item-side feature set consists:

• Content publisher: Categorical, no prior structure.
• Topical categories: Multi-valued (e.g., one article

could fall into multiple categories), a directed acyclic graph
(DAG) prior structure.

which results in 1347-dimension item-side features. Fi-
nally, each event is associated with one item-specific feature
denoted as Freshness, which measures the lifetime of the
item. Summarizing, the dataset has 8, 092-dimension ex-
plicit features for all events, the average number of non-zero
features for each event is 8.682.

Evaluation Method and Metrics: In addition to eval-
uating how well we can fit the data by measuring Rooted-
Mean-Squared-Error (RMSE), we also evaluate the proposed
methods in terms of ranking metrics. We use Mean-Average-
Precision (MAP), Mean-Reciprocal-Rank (MRR) and Preci-
sion@10 (P@10) as main evaluation metrics.
Baselines: We compare our model, denoted as STSR with

three standard baseline methods:
• ZeroMean: A model uses zero vectors as the as priors

for user/item latent factors. This includes all classic LFM

models like [7].
• RLFM: A model uses linear regression output as priors

for user/item latent factors. This includes models like [1, 3].
• FM: A model directly maps features to ratings by a



Table 1: Average performance with standard devi-
ation shown in parentheses. (* represents ‘0.000’,
i.e., *14 = 0.00014).

Overall performance
Method RMSE MAP MRR P@10

ZeroMean .757(∗00) .122(∗16) .149(∗20) .038(∗04)
RLFM .339(∗07) .157(∗74) .196(∗99) .052(∗31)
FM .329(∗00) .167(∗00) .207(∗00) .053(∗00)
STSR .329(∗00) .175(∗14) .218(∗15) .058(∗05)

Cold-start performance
Method RMSE MAP MRR P@10

ZeroMean .961(∗13) .129(∗03) .147(∗03) .037(∗02)
RLFM .339(∗03) .166(∗73) .194(∗83) .050(∗23)
FM .329(∗00) .176(∗00) .205(∗00) .052(∗00)
STSR .329(∗00) .185(∗18) .218(∗22) .057(∗06)

second-order regression model with latent feature factoriza-
tion [9].

Setting: We do grid search for all parameters of all
models and report the best average performance in 5 runs.
For ZeroMean and RLFM, we do grid search for σ2, σ2

u, and
σ2
v in

{
10−2, 10−1, . . . , 102

}
, and latent space dimension-

ality K in {5, 10, 20, 50}. For FM, we do grid search for
the regularization parameter λ in

{
10−4, 10−3, 10−2, 10−1

}
and latent space dimensionality K in {4, 8, 16, 32}. For
STSR, we search λ in

{
10−4, 10−3, 10−2, 10−1

}
and ν in{

10−9, 10−7, 10−5, 10−3, 10−1
}
.

3.1 Experimental Results
We run each model for 5 times from different initializa-

tion and average the metrics from multiple runs. The com-
parison result is shown in Table 1. From the table we see
that STSR outperforms other models in all ranking metrics
significantly. As expected, ZeroMean does poorly in all rank-
ing metrics, which validates the statement made in previous
studies that it does not handle cold-start problems. RLFM

does significantly better than ZeroMean, implying that fea-
tures are critical to address cold-start problems and bet-
ter user/item factors might be learned by utilizing features.
FM performs significantly better than RLFM which is consis-
tent with the statement in literature. Finally, STSR learns
sparse relationships among features and only the links that
are truly contributing to the performance will be enabled
through structured sparse coding. Thus, the sparse struc-
ture learned from STSR turns out making a difference in
terms of ranking metrics.

Parameter Analysis: We investigate how different sets
of parameters impacting the performance in Figure 2. The
optimal parameters are λ = 0.001, ν = 10−5. The figure
shows that STSR is not very sensitive to ν with wide ranges,
the metrics only differ in ten-thousandths place. STSR is
mildly sensitive to λ when λ is relatively small, but larger λ
does badly hurt the ranking performance. In practice, one
can use a validation set (with gold standard) to tune the
parameters by grid search.

4. CONCLUSIONS
We proposed a structured sparse regression model that

is able to learn heterogeneous sparse structure on the
user/item features. We developed an efficient learning al-
gorithm that scales linearly to the number of events. Exper-

1e−009
1e−007

1e−005
0.001

0.1
0.0001

0.001
0.01

0.1

0

0.2

0.4

ν

RMSE

λ 1e−009
1e−007

1e−005
0.001

0.1
0.0001

0.001
0.01

0.1

0

0.1

0.2

ν

MAP

λ

1e−009
1e−007

1e−005
0.001

0.1
0.0001

0.001
0.01

0.1

0

0.1

0.2

ν

MRR

λ 1e−009
1e−007

1e−005
0.001

0.1
0.0001

0.001
0.01

0.1

0

0.02

0.04

0.06

ν

MP@10

λ

Figure 2: Average metrics in 5 runs with different λ
and ν for STSR

iments on a large-scale news recommendation dataset have
demonstrated the superior performance of our model com-
pared to the state-of- the-art alternatives, especially for the
cold start users, for whom the structure of features turns out
to be critical information for the recommendation quality.
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