
GB-CENT: Gradient Boosted Categorical Embedding and
Numerical Trees

Qian Zhao
University of Minnesota

Minneapolis, USA
zhaox331@umn.edu

Yue Shi
Yahoo Research∗
Sunnyvale, USA

yueshi@acm.org

Liangjie Hong
Etsy Inc.†

Brooklyn, NY, USA
lhong@etsy.com

ABSTRACT
Latent factor models and decision tree based models are
widely used in tasks of prediction, ranking and recommenda-
tion. Latent factor models have the advantage of interpret-
ing categorical features by a low-dimensional representation,
while such an interpretation does not naturally fit numerical
features. In contrast, decision tree based models enjoy the
advantage of capturing the nonlinear interactions of numer-
ical features, while their capability of handling categorical
features is limited by the cardinality of those features. Since
in real-world applications we usually have both abundant
numerical features and categorical features with large car-
dinality (e.g. geolocations, IDs, tags etc.), we design a new
model, called GB-CENT, which leverages latent factor embed-
ding and tree components to achieve the merits of both while
avoiding their demerits. With two real-world data sets, we
demonstrate that GB-CENT can effectively (i.e. fast and accu-
rately) achieve better accuracy than state-of-the-art matrix
factorization, decision tree based models and their ensemble.

Keywords
recommender systems; matrix factorization; low-
dimensional embedding; gradient boosting; decision
trees; numerical and categorical features; large cardinality

1. INTRODUCTION
Among a variety of machine learning models, Matrix Fac-

torization (MF) and ensemble of decision trees are widely
used in tasks of prediction, ranking and recommendation.
Prior studies have shown their effectiveness [6, 4]. MF has
been generalized from traditional Singular Value Decompo-
sition (SVD) in linear algebra to low-dimensional embedding
models, e.g. from FunkSVD [13] to SVDFeature [7] and Fac-
torization Machine [24] (FM) in recommender systems. De-

∗Yue Shi is now at Facebook.
†Liangjie Hong was at Yahoo Research when this work was
done.

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052668

.

cision trees like CART [3] are popular in practice because
they are good at handling high-order nonlinear interactions
among input features. Their performance can be further en-
hanced when many trees are ensembled. For instance, Gra-
dient Boosting Machine (GBM) proposed by Friedman [12]
can boost any weak learner which has better than random
performance to be a strong predictor. Particularly, a widely
used model Gradient Boosted Decision Trees (GBDT) is a GBM

using trees as the weak learners. Random Forest [2], on the
other hand, which represents another ensemble approach,
bagging (v.s. boosting), achieves great performance by av-
eraging many decision trees mainly because of the variance
reduction compared with each individual tree.

In real-world applications, input features are generally di-
vided into two types: numerical features and categorical fea-
tures. From this perspective, both embedding based and
decision tree based models seem to be good at handling
one type but not so good at the other. For example, for
embedding based models, it is natural to embed categori-
cal user IDs into a low-dimensional space to represent user
latent preferences, embedding the release year of a movie
does not make as much sense. When the scale of a numer-
ical feature is big and its relationship with the output is
nonlinear, sophisticated preprocessing is necessary to make
sure the embedding algorithm is stable and the model is fit-
ted well. For decision trees, on the contrary, although it
is relatively easy to split on low cardinality categorical fea-
tures by one-hot encoding [23], when the cardinality of the
feature becomes large (e.g. user IDs), it is very expensive
to split on it and have to resort to approximated splitting
algorithms [4]. In practice, such large cardinality categori-
cal features are sometimes transformed to be numerical by
either computing response statistics for the feature or em-
bedding them into low-dimensional space before feeding into
decision trees. This two-stage modeling approach is usually
much more complex to maintain in practice than a single
one.

In this paper, we design a new model that composes of
both embedding and tree components to solve the above
problem. It harnesses categorical features with large cardi-
nality and handles high-order nonlinear interaction of the
input features. From the application point of view, it is
also very intuitive to interpret and hence makes it easier to
inspect for potential modeling problem. Our major contri-
butions in this work are summarized as below:

• We design a new predictive model, GB-CENT, that lever-
ages the advantages of the latent factor models and
gradient boosted decision trees in respect to their ca-

pability of exploiting categorical features and numer-
ical features. We demonstrate that GB-CENT performs
significantly better than state-of-the-art factorization
and decision tree based models that do not explicitly
differentiate categorical features from numerical fea-
tures, such as SVDFeature, FM and GBDT.

• We demonstrate that GB-CENT out-performs state-of-
the-art ensemble of matrix factorization and GBDT in
terms of prediction accuracy.

• We show that GB-CENT is much faster to learn than the
ensemble of matrix factorization and GBDT.

The rest of this paper is organized as follows. We discuss
the related work in §2 and introduce our proposed method
in §3, followed by experiments and evaluations on real world
datasets in §4. Further discussions and future work can be
found in §5 and §6 and we conclude the paper in §7.

2. RELATED WORK
MF techniques especially the optimization version of SVD

(i.e. low dimensional approximation of the original matrix
with respect to Frobenius norm) has been used by recom-
mender system researchers on the rating matrix of users on
items [21] to predict unobserved ratings in the matrix. In ad-
dition to the inner product of two low-dimensional factors,
Funk et al. [13] added bias terms into the approximation
function, which gives FunkSVD model. Koren et al. demon-
strated that SVD++ [20] which further models the set of rated
items by users with latent factors can improve rating pre-
diction accuracy. Real systems usually have both explicit
feedback of ratings from users but also much more implicit
behavioral data of clicks, purchases etc. Hu et al. [17] intro-
duced the confidence level parameter to model the associated
uncertainty on user preference with implicit feedback data.
Singh et al. proposed collective matrix factorization [25] to
model multiple available relations among the entities in the
domain, such as rating, clicking, tagging matrices in recom-
mender systems, essentially treating it as weighted multi-
objective optimization problem. Karatzoglou et al. [18]
modeled user behavioral data as a User-Item-Context N-
dimensional tensor instead of the traditional 2D User-Item
matrix. They showed that the accuracy benefits of their
Multiverse Recommendation by effectively modeling contex-
tual information with tensor factorization. Agarwal et al.
proposed regression based latent factor models in [1], where
response to be predicted is modeled as a multiplicative func-
tion of row and column latent factors that are estimated
through separate regressions on known row and column fea-
tures. SVDFeature by Chen et al. [7] and Factorization Ma-
chine (FM) by Rendle [24] can model any second-order in-
teraction of input features by embedding them in a low-
dimensional vector space to predict the response variable.
The difference between the two is that SVDFeature explic-
itly categorizes input features into three groups including a
global group, user group and item group and only the fea-
tures indicated in user and item groups are interacted with
each other. In comparison, FM by default models the second
order interaction between all pairs of input features. From
above, we see a transition from traditional linear algebra
based SVD to optimization based supervised embedding, sim-
ilarly to frameworks of graph embedding for various kinds
of relational graphs [26].

Quite different from embedding based models, decision
trees such as CART [3] split the input space into a set of rect-
angular regions and model the distribution of response vari-
ables in the regions to make prediction. It takes into account
high-order nonlinear interaction among input features when
deeper trees are fitted. When using trees as components,
powerful predictive models can be fitted through the frame-
works of generalized additive modeling (GAM) [15] or GBM [12].
Different from GAM where backfitting algorithms [15, 11] are
usually used to fit component functions iteratively until con-
vergence, GBM greedily fits the negative gradient of the cur-
rent predictive function with another component function,
e.g. another tree for GBDT. GBDT has been shown to be very
effective in practice. Several well optimized open-source im-
plementations are available, such as gbm R package, scikit-
learn [23] in Python and xgboost [4] in C++.

Many researchers have approached the problem of com-
bining generalized MF and decision trees to solve real-world
application problems. Zhou et al. proposed functional ma-
trix factorization (fMF) [28] to attack cold-start recommen-
dation. fMF constructs a decision tree for the initial inter-
view questions of onboarding a new user and associate latent
profiles for each node of the tree. It enables the recom-
mender to query a user adaptively according to the user’s
prior response and gradually refine the user profiles. Karimi
et al. further improved the speed of tree construction by a
method called Most Popular Sampling [19] without harming
the accuracy of rating prediction. Their second part of work
in [19] tested the idea of improving prediction accuracy by
factorizing at nodes of the tree, which is very similar in con-
cept to what Zhong et al. [27] proposed – Contextual Col-
laborative Filtering via Hierarchical Matrix Factorization.
They showed that instead of uniformly decomposing user
rating matrix, rating prediction accuracy can be improved
by first partitioning the matrix into sub-matrices under dif-
ferent contexts, factorizing those sub-matrices and ensem-
bling at the end. They adopted Random Decision Trees
(RDT) [10], an efficient random partition technique, for the
partition process. Following the work of SVDFeature in [7],
Chen et al. [5] further theorized the problem of utilizing
auxiliary information in MF as general functional MF, by ex-
panding the form of a latent feature from a single value to
be an additive function of the auxiliary information with
component functions defined in certain families. For exam-
ple, when all the component functions are restricted to be
the same decision tree, it reduces to be the model proposed
by Zhong et al. [27]. They proposed to learn the model in
gradient boosting framework and developed algorithms to
automatically search for suitable feature functions from infi-
nite functional space and hence could demonstrate improved
prediction accuracy on real-world data sets.

3. GB-CENT

3.1 Model Description
We define the following notations to describe our model

Gradient Boosted Categorical Embedding and Numerical
Trees (GB-CENT). Consider a data set with N instances. Each
instance is denoted as (x, y) where x is a tuple with two
groups of features: categorical group a and numerical group
b, i.e. x = (a, b). y is the output or response variable we
want to predict. Further, let a = {a0, a1, a2, ..., ak} and
b = (b1, b2, ..., bp), where k + 1 is the cardinality of a and p

is the length of b. p is fixed for all instances in the data set
while k varies for different instances. Note that a is a set
and we define a0 = Root where Root is a special feature con-
tained by all instances. For example, the instance could be
a rating event by a user on a movie in a movie recommender
system, where y denotes the value of the rating, a denotes
the user’s ID, the movie’s ID, the movie’s set of genres and b
denotes the average rating, release year of the movie. Then,
CENT model is defined as follows.

ˆy(x) =

k∑
i=0

wai︸ ︷︷ ︸
bias

+ (
∑

ai∈U(a)

Qai)
ᵀ(

∑
ai∈I(a)

Qai)︸ ︷︷ ︸
factor︸ ︷︷ ︸

CAT -E

+

k∑
i=0

Tai(b)︸ ︷︷ ︸
CAT -NT

(1)

where ˆy(x) is the prediction function, w is a real vector, Q is
a real matrix with fixed d rows and T represents trees with
only b as the input features. They are all components to
learn from data and are indexed with categorical fea-
tures ai. That is, the cardinality of the set of all possible
values of a in the data set determines the length of w, the
number of columns in Q and the number of trees in the fi-
nal CENT model. U(a) and I(a) represent the user side and
the item side of a respectively which are indicated by practi-
tioners and both default to be a1:k (i.e. modeling all second-
order interactions among both sides of categorical features,
similar to Factorization Machine [24]). On the other hand,
for example, we can also choose to only model the inter-
action between user side categorical features (i.e. U(a)) of
user-ID, gender, country and item side categorical features
(i.e. I(a)) of movie-ID, genres, actors similar to SVDFeature

[7]. For categorical feature values without many support-
ing instances (xs that have a particular categorical value
ai), it may not be necessary or appropriate to learn corre-
sponding components because of a lack of evidences.

We call the former two components with parameters w
and Q in CENT model as CAT-E (reads as “cat embedding”)
and call the latter components of T as CAT-NT (reads as “cat
numerical trees”). Although we name this model CENT, the
component functions are not new. The most related work
in the literature is Chen et al.’s work [6] for KDD CUP
2012 competition1, where factorization model and additive
forests are ensembled to achieve leading performance in a
collaborative followee recommendation task. Particularly,
we point out what differentiate CENT from previous work as
follows.

3.2 Model Comparison
Differences from Additive Forest [6]. The approach

of explicitly modeling categorical features and numerical fea-
tures with different forms of functions is novel. We show the
benefits of this approach in the results section. CAT-E com-
ponent is similar to the form of SVDFeature [7] or Factor-

ization Machine [24] but leaving out numerical features.
However, as mentioned in previous sections, we propose not
to embed numerical features in low-dimensional space be-
cause of potential scale, nonlinearity problems and lack of
application level understanding (e.g. embedding the release
year of a movie is not intuitive). CAT-NT components ex-

1http://www.kddcup2012.org/

plicitly model the interaction among only numerical features
(i.e. the tree Ta0 corresponds to a0 = Root) and between the
categorical group and numerical group features through con-
ditional tree learning, fully utilizing the benefits of decision
trees in modeling high-order nonlinear interaction effects.

The categorical features themselves may be specified to
be high-order interactions such as going from uni-gram to
n-gram for texts, in which case higher-order interactions be-
tween categorical group and numerical group are naturally
taken care of by CENT.
CAT-NT can learn trees for a context, a geolocation, a user

group, an item group and even a specific user or item in
recommender systems. This generalizes the additive forest
model by Chen et al. [6] where a forest was learned for each
item, except that we only use one tree instead of a forest of
boosted trees here and each tree has only numerical features
as the input letting CAT-E handle the effects of categorical
features.

From generalization and memorization perspective of ma-
chine learning models, CENT model also has similarity with
the recent work by Cheng et al. [8] on combining wide
and deep learning in recommender systems. Specifically,
CAT-E generalizes by embedding users and items into low-
dimensional space capturing their general profiles, tastes,
topics and mutual similarities, while CAT-NT memorizes each
user or item’s peculiarities in relevant numerical metrics, e.g.
a user might only be interested in movies released after 2010
and with average rating higher than 4 stars.

Differences from GBDT. In order to clarify the differ-
ences between CAT-NT and GBDT [12, 11], we briefly introduce
GBDT here. A boosted tree model is a sum of decision trees
as shown in Equation 2 where M is the number of trees
(a pre-specified parameter) and x is an instance as defined
previously.

fM (x) =

M∑
m=1

Tm(x) (2)

Note that it uses both categorical a and numerical b as
input. a is one-hot encoded [23], i.e. representing a as a
binary-valued (0 or 1) sparse vector with its length equal
to the cardinality of the categorical features in the data set
and most of the entries being zeros except the entries cor-
responding to the categorical feature values in a. At m-th
step of learning a GBDT following gradient boosting frame-
work [12], a new tree Tm is learned to fit the negative gradi-
ents of

∑
L(y, fm−1(x) + Tm) where L is certain loss func-

tion (see [11] for the negative gradients of different loss func-
tions) and the summation is with respect to N instances in
the whole data set.

To summarize, there are three major differences between
CAT-NT and GBDT.

1. The number of trees in CAT-NT depends on the car-
dinality of categorical features in the data set, while
GBDT has a pre-specified number of trees M .

2. Each tree in CAT-NT only takes numerical features b
as input while GBDT takes in both categorical a and
numerical b.

3. Learning a tree for GBDT uses all N instances in the
data set while the tree for a categorical feature ai in
CAT-NT only involves its supporting instances.

Algorithm 1: Training Gradient Boosted Categorical Embedding and Numerical Trees (GB-CENT)

Data: training set (X,Y) = ((A,B), Y) with each row/instance as (x, y) = ((a, b), y) where a is the categorical group of
features and b is the numerical group of features

Optional Data: validation set (X ′, Y ′) in the same format as (X,Y)
Parameters: maxTreeDepth, minNodeSplit, minTreeSupport, minTreeGain

1 w, Q ← run stochastic gradient descent algorithm with L as the loss function of CAT-E, with A as input and Y as the
label (optionally monitored by A′ and Y ′ to prevent overfitting)

2 S(c)← compute a mapping from all possible categorical feature values c in A to the number of supporting instances
3 C ← get a list of all possible categorical feature values c sorted descendingly according to the support S(c)

4 Ŷ ← predictions of Y from CAT-E (with w, Q; similarly on validation set which is optional)
5 for c in C do
6 if S(c) >= minTreeSupport then
7 B(c), Y (c) ← the subset of supporting instances of c (similarly on validation set, optional)

8 ˆY (c) ← the subset of predictions on the supporting instances of c (similarly on validation set, optional)

9 R(c)← compute the negative gradients of L at ˆY (c), Y(c)
10 t← run a regression tree learning algorithm with B(c) as the input and R(c) as the label, and maxTreeDepth

and minNodeSplit as parameters to control the size of the tree.

11 ˆnewY (c)← ˆY (c) + t (similarly similarly on validation set, optional)
12 if tree-is-warranted(t, minTreeGain, other optional parameters) then
13 T (c)← t

14 ˆY (c)← ˆnewY (c) (similarly on validation set, optional)

15 end

16 end

17 end
Result: w, Q, T where T is a mapping from categorical feature values to decision tree functions.

3.3 The Training Algorithm
Learning a CENT model corresponds to finding an approx-

imate solution for the problem in Equation 3, where L is
the specified loss function according to the distribution of
the response variable y, e.g. least squares for regression and
logistic loss for binary classification.

w∗, Q∗, T ∗ ← argmin
w,Q,T

L(Y, Ŷ) (3)

There are many possible solutions to this problem. Since
CENT model belongs to GAM [15] family, we can train the
model through backfitting algorithms [15, 11], i.e. alterna-
tively fitting one of the CAT-E and CAT-NT components fixing
others until the model converges. Concerned by the com-
plexity of this approach, we instead design an algorithm fol-
lowing the gradient boosting framework [12] by first fitting
the CAT-E component until convergence and then greedily
fitting trees for the CAT-NT components. The results show
that this algorithm works and we leave designing better al-
gorithms for CENT as future work, which is discussed at the
end of the paper.

The detailed steps are illustrated in Algorithm 1 (multi-
class classification problem may not apply here but it is
straightforward to extend the algorithm for that by using
different w and Q for each class). As shown there, CAT-E

(with w and Q) is first trained by stochastic gradient descent
algorithm, with L as the loss function, A as the input and
Y as labels (see SVDFeature [7] for detailed steps). Then
a regression tree (we used CART [3] here; future work is
necessary to compare training single tree vs. an ensemble of
multiple trees) for each categorical feature values is trained
to fit the negative gradients of the current model. We use a
heuristic here to order the fitting of the trees descendingly

in the number of supporting instances. Note that the tree
for a0 = Root, i.e. a tree to model the interactions among
only numerical features always has the biggest support and
gets trained first because it is present in all instances.

The four parameters are all used to regularize the tree
learning of CAT-NT because potentially there could be mil-
lions of possible categorical values in large scale systems.
However, the cost of training each tree is substantially lower
by subsetting compared with using the whole dataset and
it gets cheaper and cheaper as the number of supporting
instances is decreasing (which is shown in the results sec-
tion). minTreeSupport controls whether training a tree for
a categorical feature value at all. maxTreeDepth and minN-
odeSplit controls the maximum depth of the tree and how
many instances are required in a node of the tree to be fur-
ther splitted. After fitting a tree, a sub procedure is-tree-
warranted with minTreeGain as a parameter is used to
decide whether keeping the tree in the final model. By de-
fault we test whether the loss of the validation subset for the
categorical feature decreases. Different kinds of procedures
are experimented in the results section.

Note that CAT-E and CAT-NT both can be separately
trained without much modification to Algorithm 1. To get
CAT-NT without CAT-E, the only difference is to set the initial
predictions from CAT-E Ŷ to be zeros.

4. EXPERIMENTS AND RESULTS
To show the benefit of our GB-CENT model, we conducted

experiments performing the tasks of rating prediction and
binary classification on two real-world data sets. Following
are the baseline models we compared with.

• GBDT-OH: One-Hot encode a and feed them into GBDT

together with b.

Table 1: MovieLens and RedHat data sets and their corresponding feature design.
Data Set MovieLens RedHat

Statistics for Original Data Set
#users: 240,000
#items: 33,000
#instances: 22,000,000

#customers: 151,295
#activity categories: 7
#instances: 2,197,291

Number of Runs 20 5

Statistics for Each Run
#users: ∼ 12,000
#items: ∼ 14,000
#instances: ∼ 1,100,000

#customers: ∼145239
#activity categories: 7
#instances: ∼1757833

CAT-E Features

a: userId, itemId, genre, language,
country, grade
U(a): userId
I(a): itemId, genre, language
country, grade

a: people id, activity category
U(a): people id
I(a): activity category

CAT-NT Features
b: year, runTime, imdbVotes,
imdbRating, metaScore

b: char 38

GBDT-OH x, i.e. both a and b x, i.e. both a and b
GBDT-CE Similar to GBDT-OH except that a is

first embedded into latent space based
on CAT-E

Similar to GBDT-OH except that a is
first embedded into latent space based
on CAT-E

SVDFeature-S
user group: userId
item group: a except userId and
sigmiod transformed b

user group: U(a) and sigmoid
transformed b
item group: I(a)

SVDFeature-D Similar to SVDFeature-S except that b
is discretized.

Similar to SVDFeature-S except that b
is discretized.

FM-S
x, i.e. both a and sigmoid
transformed b

x, i.e. both a and sigmoid transformed b

FM-D Similar to FM-S except that b is dis-
cretized.

Similar to FM-S except that b is dis-
cretized.

Label/Response real response: rating, 1-5 stars binary response: outcome, yes or no

• GBDT-CE (state-of-the-art ensemble of GBDT and matrix
factorization): First embed a into latent space based
on CAT-E. Specifically, let d be the latent space dimen-
sion, then d new numerical features are generated for
user group and d new numerical features are generated
for item group, by taking the sum of each individual
categorical feature’s latent embedding vector. They
are fed into GBDT together with b.

• SVDFeature-S: Sigmoid transform b and feed them into
SVDFeature together with a. Specifically, we use the
following sigmoid function to transform numerical fea-
tures (Equation 4). This linear transformation func-
tion makes sure the scale of output is within (−1, 1)
while better retaining the difference of input values and
hence is sometimes better suitable for feature transfor-
mation, compared with the nonlinear logistic sigmoid.

• SVDFeature-D (state-of-the-art ensemble of matrix fac-
torization with decision trees): discretize b based on
a single decision tree model and feed them into SVD-

Feature together with a. Specifically, we built a sin-
gle decision tree with only b as input on the training
set (maxTreeDepth=10, minNodeSplit=2000). Then
its predicted leaf node is used as the discretized cat-
egorical feature. In most cases, it gives a full tree,
i.e. around 1024 possible nodes. This approach of dis-
cretization takes the distribution of response variables
into account when varying the feature values. It can
help linear models learn nonlinearity by nonlinearly
mapping numerical features into buckets. It is similar

to treating decision trees as feature extractors of large
sparse linear models as illustrated in [16].

• FM-S: Similarly sigmoid transform b using Equation 4
and feed them into FM together with a.

• FM-D (state-of-the-art ensemble of matrix factoriza-
tion with decision trees): Similarly discretize b as
SVDFeature-D and feed it into FM together with a.

f(x) =
x

1 + |x| (4)

4.1 Data Sets, Metrics and Software
Table 1 summarizes the data sets we used and their cor-

responding feature design. The first one is MovieLens latest
ratings data set [14]2. To have more abundant meta data on
movies, especially numerical metrics, we requested IMDB
API 3 for more movie statistics. This is enabled because
there is a matching file for MovieLens movie IDs and IMDB
IDs provided in the latest MovieLens data set. Instead of
running evaluation once for each original data set using
all users’ data, we bootstrap the data sets by randomly sam-
pling users without replacement to have more robust eval-
uation which essentially divides each original dataset into
multiple subsampled data sets of nonoverlapping users.
For each subsampled data set, we first sort it temporally and

2http://grouplens.org/datasets/movielens/latest/
3http://www.omdbapi.com/

Table 2: The mean metrics (with standard deviation in the parentheses) of different models on MovieLens
data set with 20 runs and RedHat data set with 5 runs. Time(s) shows the total training time of each
model in seconds. The plus and minus for RMSE and AUC indicate accuracy improvement or degradation
compared with our model GB-CENT. For Time(s), they mean more or less training time compared with
GB-CENT.

Data Set Metric GBDT-OH GBDT-CE SVDFeature-S SVDFeature-D FM-S FM-D CAT-E CAT-NT GB-CENT

MovieLens
RMSE

0.883
(0.007)
-%1.8

0.863
(0.006)
+%0.4

0.877
(0.009)
-%1.1

0.867
(0.006)
+%0.0

0.913
(0.024)
-%5.3

0.888
(0.005)
-%2.4

0.886
(0.011)
-%2.1

0.900
(0.006)
-%3.8

0.867
(0.006)

Time (s)
282

+1.08
1034
+6.65

68
-%49.6

66
-%51.1

73
-%45.9

60
-$55.5

77
-%42.9

54
-%60.0

135

RedHat
AUC

0.955
(0.0005)
-%3.6

0.981
(0.0003)
-%1.0

0.975
(0.0002)
-%1.6

0.976
(0.0003)
-%1.5

0.986
(0.0009)
-%0.5

0.987
(0.0003)
-%0.4

0.967
(0.0002)
-%2.4

0.942
(0.0006)
-%4.9

0.991
(0.00006)

Time (s)
857

+%35.8
3140
+3.97

130
-%79.3

241
-%61.8

204
-%67.6

181
-%71.3

561
-%11.0

98
-%84.4

631

further split it into 80% training, 10% validation and 10%
testing sets for each user, i.e. we always use user history data
to predict user future behavior. The second one is RedHat
data set which was used for Kaggle competition4. The task
is to identify which customers who performed certain activ-
ities have the most potential business value for Red Hat.
For this data set, we randomly pick 10% of the instances
as validation set, another different 10% as the testing set,
the other 80% as training set. This process was repeated
five times (i.e. five folds). We call the process of training a
model on the training set (using the validation set to prevent
overfitting during training) and then evaluating the model
on the testing set one run of the evaluation procedure.

For rating prediction task on MovieLens data set, we use
Root Mean Squared Error (RMSE) as the metric. For binary
classification task on RedHat data set, we use Area Under
the Curve (AUC) as the metric.

We use open source implementation xgboost [4] through
Java API to operationalize the GBDT-OH and GBDT-CE mod-
els in our experiments. The default parameter setting is
used except that tree method [12] is set to be exact split-
ting for all experiments, i.e. although xgboost supports ap-
proximate splitting to accelerate training, we always use
exact splitting. In each run, 1000 trees/rounds are fit-
ted and take the model from the best iteration. All the
other models are implemented by the authors in Java 5.
We confirmed the performance of the implementation is
consistent with the SVDFeature and FM implementations in
[7] and [24]. All factorization models are fitted on train-
ing set with 50 maximum number of iterations. The di-
mension of latent factors d is 20. Learning rate is 0.001
for MovieLens data set and 0.01 for RedHat data set.
We did not use regularization on w and Q given we al-
ready use validation set to avoid overfitting. For GB-CENT

model, we set minTreeSupport = 50, minTreeGain = 0.0,
minNodeSplit = 50 and maxTreeDepth = 3. The exper-
iments are run on a single machine with 8 available cores
(Intel i7-4790 CPU @ 3.60GHz) and 32 GB memory.

4.2 Results
4https://www.kaggle.com/c/predicting-red-hat-business-
value. The competition was complete on August 2016, but
the data set is still publicly available.
5Open sourced in Github together with a generic rec-
ommender and predictor server called Samantha devel-
oped by the first author in GroupLens research lab:
https://github.com/grouplens/samantha

0

100

200

0 250 500 750
Number of Trees

T
im

e
in

 S
ec

on
ds

CAT−NT

GBDT−OH

Figure 1: The time taken as more trees are boosted
in GBDT-OH and CAT-NT on MovieLens data set in one
run of the evaluation. xgboost is using 8 available
cores on the tested machine.

Accuracy. As shown in Table 2, GB-CENT achieves the
best accuracy on both data sets. Note that on MovieLens
data set, GBDT-CE is not significantly different from GB-CENT.
SVDFeature-D achieves the same accuracy on MovieLens
data set compared with GB-CENT, but it performs %1.5 worse
on RedHat data set. This suggests that GB-CENT’s accu-
racy generalizes better across tasks and data sets. It stably
achieves better accuracy than other models. Note that the
best AUC achieved in the Kaggle competition on RedHat data
set is 0.9956. GB-CENT can achieve 0.996 when using all avail-
able features (although it is evaluated on a different subset
as designed in Table 1). Our experiments in this paper used
three features, two of which are categorical and the other
one is numerical and achieve AUC score 0.991.

Training Time. Training GB-CENT is faster than both
GBDT-OH and GBDT-CE. GBDT-OH takes 1.08 times longer to
train than GB-CENT and GBDT-CE takes 6.65 times longer.
Factorization models are faster than GB-CENT, but their ac-
curacy generally suffers compared with GB-CENT. CAT-NT is
much faster to train than GBDT-OH because each numerical
tree in CAT-NT only involves its supporting instances as men-
tioned above. From Figure 1, in learning the first several
trees, CAT-NT takes more time because of the computation
and sorting of the number of supporting instances of cate-
gorical features (i.e. S(c) in Algorithm 1). As more trees are
introduced, CAT-NT takes less and less time and dramatically

6https://www.kaggle.com/c/predicting-red-hat-business-
value/leaderboard/private

0.86

0.87

0.88

0.89

0.90

0.91

10 20 30
Number of Folds

R
M

S
E

CAT−NT

GB−CENT

GBDT−OH

Figure 2: The testing RMSEs for GBDT-OH, CAT-NT and
GB-CENT on MovieLens data set as more users’ data
are used, i.e. when categorical features’ cardinality
increases. Going from right to left, as the number
of folds decreases, more users’ data are included in
one run.

reduce the overall time compared with GBDT-OH. The ratio
of learning the same number of trees (1000 here) is about 1
vs. 4.

Ensemble. Discretizing numerical features based on a
decision tree works better than sigmoid transformation. Be-
cause of the linear limitation of factorization models, deci-
sion tree based discretization or feature extraction helps it
capture the nonlinearity in the data set. Embedding cate-
gorical features into low-dimensional space, i.e. GBDT-CE is
more accurate than using raw categorical features in GBDT-

OH. However, it incurs substantial cost. The training time is
much longer. GB-CENT behaves consistently with our design
and hypotheses: it effectively (i.e. fast and accurately) han-
dles both low-dimensional embedding and high-order non-
linearity of the data set.

Cardinality. Results in Figure 2 are also consistent with
our hypothesis as mentioned in the introduction. We use
the number of users as a proxy of the cardinality of cate-
gorical features because it increases when more users’ data
are used. It also reflects the scenario when a real appli-
cation system has more and more active users. The figure
shows that when the cardinality of the data increases, the
gap between the GBDT-OH and CAT-NT has a shrinking trend
while the gap between GBDT-OH and GB-CENT has a expand-
ing trend. With large enough cardinality, CAT-NT itself can
out-perform GBDT-OH as illustrated by the cross of the two
lines in Figure 2. This demonstrates that CAT-NT in GB-CENT

dynamically exploits the growing cardinality of the data set
to achieve better and better accuracy.

4.3 Tree Regularization
An important part in training CAT-NT component of GB-

CENT is to regularize the tree learning, which has two aspects:
the size of the individual tree and whether a tree is war-
ranted to keep in the final model. Parameter maxTreeDepth
controls the first aspect and minTreeSupport controls the
second, i.e. whether learning a tree at all for a categorical
feature value. Table 3 illustrates how RMSE varies with dif-
ferent values of the two parameters on MovieLens data set.
They tell that generally lower values for both parameters
seem to be better. In other words, the size of an individual
tree should be small (similar to the default setting of GBDT-
OH) and the threshold to learn a tree should be low. We

Table 3: The effect of minTreeSupport and max-
TreeDepth on MovieLens data set. minTreeSupport
is held to be 50 when varying maxTreeDepth; max-
TreeDepth is held to be 3 when varying minTreeSup-
port.
minTree-

Support

RMSE maxTree-

Depth

RMSE

10 0.902 2 0.901
50 0.906 3 0.906
100 0.917 5 0.918
200 0.925 8 0.924
300 0.936 10 0.929
400 0.943 15 0.950

Table 4: The effect of tree regularization on
MovieLens data set. minTreeSupport=50, max-
TreeDepth=3.
Regulariza-

tion

minTree-

Gain

Number of

Accepted

Trees

RMSE

AAT N.A. 7926 0.905

VSLR

0 7606 0.906
1 7559 0.913
3 7441 0.921
5 6737 0.928
8 6375 0.945

tested two approaches for the procedure is-tree-warranted
as follows given that a tree has been learned.

• Validation Subset Loss Reduction (VSLR),
which tests whether there is reduction in the average
loss of the predictions on the subset of the validation
set that the tree’s categorical feature value (c) corre-
sponds to. We set minTreeGain = 0 by default. Since
this approach only tests a subset of the validation set,
it is relatively cheaper than testing on the whole vali-
dation set.

• Accept All Trees (AAT), i.e. all learned trees are
accepted to add into the final model.

As shown in Table 4, it demonstrates a trend that learning
more trees generally gives better accuracy. However, we
think these parameters need to be tuned for specific data
sets at hand. For example, although the table shows that
smaller minTreeGain threshold is better, it is possible fitting
trees for categorical features with few supporting instances
might over-fit.

5. DISCUSSION
With above results, we demonstrate that GB-CENT model

have advantages over SVDFeature, FM, GBDT and their ensem-
bles. As motivated in the introduction section by the differ-
ence between numerical and categorical features, we think
that they are fundamentally different from both algorithmic
and application perspectives. Different from numerical fea-
tures, categorical features have two faces that a model needs
to capture in order to have better predictive performance:
low-dimensional embedding, which captures generalizability,

imdbVotes <= 36910.5
mse = 0.1816
samples = 549
value = 0.059

runTime <= 131.5
mse = 0.1615
samples = 164

value = -0.0917

True

year <= 1989.5
mse = 0.1763
samples = 385
value = 0.1232

False

mse = 0.1491
samples = 143

value = -0.1393

mse = 0.1257
samples = 21

value = 0.2324

mse = 0.1287
samples = 124
value = 0.2366

mse = 0.1899
samples = 261
value = 0.0694

Figure 3: An example tree learned by CAT-NT for a
specific user.

latent grouping or similarity of the entity that the categor-
ical feature represents, and high-order nonlinear interaction
in numerical metrics, which captures specificity or peculiar-
ity of the same entity. GB-CENT captures both and hence is
well suitable for applications with these properties such as
recommender systems.
GB-CENT model also has another benefit: interpretability.

This is not only true for CAT-E component which explicitly
describes the match between the latent profiles of users and
items after being embedded into a low-dimensional space. It
is also true for CAT-NT. Figure 3 plotting a numerical tree for
a user ID explicitly describes the user’s particular preference
on movies in a high-order and nonlinear way. It seems that
this user prefers movies that are popular (with large imdb-
Votes) but released before 1989 or movies that are not very
popular but with long run time (i.e. greater than 131 min-
utes). CAT-NT can also model the increasing level of speci-
ficity for categorical features with hierarchies such as geolo-
cations of country, state and city. One can imagine that
during the learning process, CAT-NT first learns a tree for a
country and further boosts another tree for a state if the
state has different enough regularity from its country and
similarly for cities in the state. For GBDT-OH on the other
hand, the trees learned are less interpretable mixed with
both categorical (especially IDs) and numerical features be-
cause the splitting points mostly test whether it is a specific
ID or not, implicitly doing grouping of IDs, which has been
handled by CAT-E in GB-CENT.

6. FUTURE WORK
Previous literature [22] has shown that acuracy alone is

not enough to evaluate a recommendation algorithm. We
consider it necessary future work to comprehensively evalu-
ate the recommendations made by GB-CENT model and espe-
cially conduct online field experiments to gain a better un-
derstanding on how users perceive these recommendations.
An interesting question is whether GB-CENT can achieve a
good balance between novelty [29] and accuracy because of
the generalizability of CAT-E component and the specificity
of CAT-NT component.

Another important future work we believe that needs to
be done is to scale up the training algorithm of the model,
especially CAT-NT. In real-world applications, there could be
possibly millions of categorical feature values, which corre-
sponds to learning millions of trees (note that predicting
is cheap because only accessing trees for the sparse cate-

gorical values in the instance is necessary). Therefore, dis-
tributed learning algorithm is demanded. However, we con-
sider that CAT-NT is friendly to parallelism because the trees
are learned on millions of subsets of the original data set,
which can be naturally fit into Map-Reduce framework [9].
Although gradient boosting is essentially a sequential pro-
cess with dependencies among trees, it might be possible to
break the dependency by grouping categorical feature values
and train parallelly between groups and sequentially within
groups without much loss of performance. What’s more,
GB-CENT has the potential to enable online learning of deci-
sion trees because each CAT-NT only relies sparse supporting
instances.

7. CONCLUSION
We propose a predictive model GB-CENT with both low-

dimensional embedding and decision tree components. The
first component CAT-E (Categorical Embedding) embeds cat-
egorical features into a low-dimensional space and the second
component CAT-NT (Categorical Numerical Trees) learns a
numerical tree for each categorical feature value with enough
supporting instances in the data set. GB-CENT performs sig-
nificantly better than the state-of-the-art matrix factoriza-
tion and GBDT models. It also outperforms the feature level
ensemble of the two types of models. With these results, we
demonstrate that we can be better off to differentiate model-
ing categorical features from numerical features. GB-CENT is
a model specially designed for this with nice interpretability.

Particularly, we show the advantages of CAT-NT compo-
nent in GB-CENT model over GBDT-OH. It is much less expen-
sive to learn (time ratio for the same number of trees: 1 vs.
4) and achieves increasingly better accuracy as the cardinal-
ity of the categorical features in the data set becomes larger.
Similarly, the accuracy gap between GBDT-OH and GB-CENT

is expanding with the increasing cardinality.

8. ACKNOWLEDGEMENT
We thank Yahoo Research for its support on this work

with an internship. We also thank GroupLens research on
its continuing support. We thank Ting Chen, Yue Ning and
Qingyun Wu for their helpful discussions.

9. REFERENCES
[1] D. Agarwal and B.-C. Chen. Regression-based latent

factor models. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 19–28. ACM, 2009.

[2] L. Breiman. Random forests. Machine learning,
45(1):5–32, 2001.

[3] L. Breiman, J. Friedman, C. J. Stone, and R. A.
Olshen. Classification and regression trees. CRC press,
1984.

[4] T. Chen and C. Guestrin. Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining. ACM, 2016.

[5] T. Chen, H. Li, Q. Yang, and Y. Yu. General
functional matrix factorization using gradient
boosting. In ICML (1), pages 436–444, 2013.

[6] T. Chen, L. Tang, Q. Liu, D. Yang, S. Xie, X. Cao,
C. Wu, E. Yao, Z. Liu, Z. Jiang, et al. Combining

factorization model and additive forest for
collaborative followee recommendation. KDD CUP,
2012.

[7] T. Chen, W. Zhang, Q. Lu, K. Chen, Z. Zheng, and
Y. Yu. Svdfeature: a toolkit for feature-based
collaborative filtering. Journal of Machine Learning
Research, 13(Dec):3619–3622, 2012.

[8] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked,
T. Chandra, H. Aradhye, G. Anderson, G. Corrado,
W. Chai, M. Ispir, et al. Wide & deep learning for
recommender systems. arXiv preprint
arXiv:1606.07792, 2016.

[9] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[10] W. Fan, H. Wang, P. S. Yu, and S. Ma. Is random
model better? on its accuracy and efficiency. In Data
Mining, 2003. ICDM 2003. Third IEEE International
Conference on, pages 51–58. IEEE, 2003.

[11] J. Friedman, T. Hastie, and R. Tibshirani. The
elements of statistical learning, volume 1. Springer
series in statistics Springer, Berlin, 2001.

[12] J. H. Friedman. Greedy function approximation: a
gradient boosting machine. Annals of statistics, pages
1189–1232, 2001.

[13] S. Funk. Netflix update: Try this at home, 2006.

[14] F. M. Harper and J. A. Konstan. The movielens
datasets: History and context. ACM Transactions on
Interactive Intelligent Systems (TiiS), 5(4):19, 2016.

[15] T. J. Hastie and R. J. Tibshirani. Generalized additive
models, volume 43. CRC Press, 1990.

[16] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi,
A. Atallah, R. Herbrich, S. Bowers, et al. Practical
lessons from predicting clicks on ads at facebook. In
Proceedings of the Eighth International Workshop on
Data Mining for Online Advertising, pages 1–9. ACM,
2014.

[17] Y. Hu, Y. Koren, and C. Volinsky. Collaborative
filtering for implicit feedback datasets. In 2008 Eighth
IEEE International Conference on Data Mining, pages
263–272. Ieee, 2008.

[18] A. Karatzoglou, X. Amatriain, L. Baltrunas, and
N. Oliver. Multiverse recommendation: n-dimensional
tensor factorization for context-aware collaborative
filtering. In Proceedings of the fourth ACM conference
on Recommender systems, pages 79–86. ACM, 2010.

[19] R. Karimi, M. Wistuba, A. Nanopoulos, and
L. Schmidt-Thieme. Factorized decision trees for

active learning in recommender systems. In 2013
IEEE 25th International Conference on Tools with
Artificial Intelligence, pages 404–411. IEEE, 2013.

[20] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In
Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 426–434. ACM, 2008.

[21] Y. Koren, R. Bell, C. Volinsky, et al. Matrix
factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

[22] S. M. McNee, J. Riedl, and J. A. Konstan. Being
accurate is not enough: how accuracy metrics have
hurt recommender systems. In CHI’06 extended
abstracts on Human factors in computing systems,
pages 1097–1101. ACM, 2006.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
learning in python. Journal of Machine Learning
Research, 12(Oct):2825–2830, 2011.

[24] S. Rendle. Factorization machines with libfm. ACM
Transactions on Intelligent Systems and Technology
(TIST), 3(3):57, 2012.

[25] A. P. Singh and G. J. Gordon. Relational learning via
collective matrix factorization. In Proceedings of the
14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 650–658.
ACM, 2008.

[26] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and
S. Lin. Graph embedding and extensions: a general
framework for dimensionality reduction. IEEE
transactions on pattern analysis and machine
intelligence, 29(1):40–51, 2007.

[27] E. Zhong, W. Fan, and Q. Yang. Contextual
collaborative filtering via hierarchical matrix
factorization. In SDM, volume 12, pages 744–755.
SIAM, 2012.

[28] K. Zhou, S.-H. Yang, and H. Zha. Functional matrix
factorizations for cold-start recommendation. In
Proceedings of the 34th international ACM SIGIR
conference on Research and development in
Information Retrieval, pages 315–324. ACM, 2011.

[29] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and
G. Lausen. Improving recommendation lists through
topic diversification. In Proceedings of the 14th
international conference on World Wide Web, pages
22–32. ACM, 2005.

	Introduction
	Related Work
	GB-CENT
	Model Description
	Model Comparison
	The Training Algorithm

	Experiments and Results
	Data Sets, Metrics and Software
	Results
	Tree Regularization

	Discussion
	Future Work
	Conclusion
	Acknowledgement
	References

