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1 Query Likelihood Language Models

The basic idea behind Query Likelihood Language Models (QLLM) is that a query is a sample drawn from a language

model. In other words, we want to compute the likelihood, that given a document language model θD, how likely the

posed query Q would be used. Formally, this can be expressed as P (Q|θD). Two questions will immediately arise

following this formulation. (1) How to choose the model to represent θD? (2) How to estimate θD?

1.1 Multinomial Language Model

One popular choice for θD is multinomial distribution. The original multinomial distribution is

P (X1 = x1, X2 = x2, X3 = x3, ..., Xn = xn) =
n!

x1!x2!...xn!
p
x1

1
p
x2

2
...p

xn

n

In Language Modeling, we usually ignore the coefficient and therefore we obtain unigram language model so that the

order of text sequence is not important. Use multinomial distribution to model θD , we obtain

P (Q|θD) =
∏

w∈Q

P (w|θD) (1)

=
∏

w∈V

P (w|θD)c(w,Q) (2)

where c(w,Q) is the number of times that term w appearing in query Q. Now, the problem becomes to estimate

P (w|θD). In theory, we need to estimate it for all the terms in our vocabulary. However, since c(w,Q) could be 0
(meaning that term w does not show up in the query), we only care about the terms in the query.

The key point here is that we do not know θD! How can we calculate P (w|θD) for the terms in the query

when we really do not have a model in hand? One way is to use document D as a sample to estimate θD. Therefore,

essentially, we choose the model θD such that θ̂D = arg maxθP (D|θ).

One simple way to estimate P (D|θ) is through Maximum Likelihood Estimator (MLE). Now, let us to derive

ML for Multinomial Language Model. First, we usually work on log-likelihood rather than the product of

probabilities just to avoid very small numbers:

logP (D|θ) =
∑

w∈V

c(w,D) logP (w|θ)

Then, use Lagrange Multipliers, we obtain:

L = logP (D|θ) + λ(1−
∑

w∈V

P (w|θ))
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Take all derivatives respect to P (w|θ) and λ:

∂L

∂P (w|θ)
=

c(w,D)

P (w|θ)
− λ = 0

∂L

∂λ
= 1−

∑

w∈V

P (w|θ) = 0

From the first equation, we can get P (w|θ) = c(w,D)
λ and also

∑
w∈V c(w,D) = λ

∑
w∈V P (w|θ) = λ. Therefore,

P (w|θ) =
c(w,D)∑

w∈V c(w,D)
=

c(w,D)

|D|
(3)

Note, here, we have two important assumptions:

• A query Q is sampled from a underlying language model θD. This point is usually stated explicitly in literature.

• The document D is used to estimate θD and therefore, we implicitly assume D is also sampled from θD. This

is not clear in most related work.

Also, although we are using ML estimator to get the best guess of θD, we actually do not need θD due to Equation 1.

All we need is conditional probability P (w|θD). So, the multinomial distribution is never explicitly calculated.

Using Equation 3, we can easily calcuate Equation 1 by:

logP (Q|θD) =
∑

w∈Q

c(w,Q) logP (w|θD)

where c(w,Q) is usually ignored in the literature.

1.1.1 Multinomial Language Model with Dirichlet Prior

Since P (D|θ) is a multinomial distribution, we can impose a prior distribution on it and obtain a Maximum A Prior

(MAP) estimator rather than a MLE estimator. Usually, we use a Dirichlet distribution.

P (D|θ) =
Γ(|D|+

∑V
i αi)∏V

i Γ(c(wi, D) + αi)

V∏

i

θ
c(wi,D)+αi−1
i

If we denote Λ =
Γ(|D|+

∑
V

i
αi)∏

V

i
Γ(c(wi,D)+αi)

and apply Lagrange Multipliers, we can have:

logP (D|θ) = logΛ +
V∑

i

(c(wi, D) + αi − 1) log θi + λ(1 −
V∑

i

θi)

Taking derivatives respect to θi, we have:

∂ logP (D|θ)

∂θi
=

c(wi, D) + αi − 1

θi
− λ = 0

Therefore, we can derive that
∑V

i λθi =
∑V

i c(wi, D) +
∑V

i αi − |V | and conclude that:

θ̂i =
c(wi, D) + αi − 1

|D|+
∑V

i αi − |V |

When αi = 1, MAP estimator goes back to MLE estimator. If αi = 2, the equation gives Laplace smoothing and if

αi = µ
c(wi,C)

|C| + 1 gives the popular Dirichlet Prior smoothing.
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1.1.2 Bayesian Multinomial Language Model

1.2 Multiple Bernoulli Language Model

When Language Model was firstly introduced, Multiple Bernoulli Language Model was used. Although it is less

explored later in the literature mainly due to its weaker assumptions (e.g. the occurrences of different words are

independent, compared to Multinomials, every occurrences of a word, including the multiple occurrences of the same

word, is independent). We define a binary random variable Xi ∈ {0, 1} for each term wi to indicate whether word wi

is present or absent in the query.

According to this definition, we can express P (Q|θD) as :

P (Q|θD) =
∏

wi∈Q

P (Xi = 1|θD)
∏

wi /∈Q

P (Xi = 0|θD)

Therefore, the problem is reduced to estimate P (Xi = 1|θD) and P (Xi = 0|θD).

Similar as Multinomial Language Model, we do not know θD and what we can do is to make the best guess through

ML estimator. For a document D, the log-likelihood in terms of parameter P (Xi = 1|θD) and P (Xi = 0|θD) is:

L = log

N∏

i

P (Xi|θD) =

N∑

i

logP (Xi|θD)

= Nk logP (Xi = 1|θD) + N̄k logP (Xi = 0|θD)

= Nk logP (Xi = 1|θD) + N̄k log(1− P (Xi = 1|θD))

where N is the number of terms in D, Nk is the number of times the word wi showing up in D and N̄k is the number

of times of absence. Take derivatives respect to P (Xi = 1|θD):

∂L

∂P (Xi = 1|θD)
=

Nk

P (Xi = 1|θD)
−

N̄k

1− P (Xi = 1|θD)
= 0

→P (Xi = 1|θD) =
Nk

Nk + N̄k
=

Nk

N

Therefore, the ML estimator of Multiple Bernoulli Language Model is exactly the same as the ML estimator Multino-

mial Language Model.

1.2.1 Multiple Bernoulli Language Model with Beta Prior

Similar to Multinomial Language Model, we can impose a prior distribution on the Multiple Bernoulli Language

Model. Here, we use Beta distribution and have the Language Model with the following form:

P (D|θ) =

V∏

i

1

Bi
θ
(Ni+αi−1)
i (1− θi)

(N−Ni+βi−1)

where Bi is the beta function. Again, we can obtain the solution in a closed form:

θ̂i =
Ni + αi − 1

|D|+ αi + βi − 2

A popular choice for hyper-parameters αi and βi is as follows:

αi = µ
Ni

|C|
+ 1 and βi =

|C|

Ni
+ µ(1 −

Ni

|C|
)− 1
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1.3 Poisson Language Model

A less explored formalism is to use Poisson distribution to model the queries and documents. One obvious advantage

of Poisson distribution is to model the frequency of events. The probability density function of Poisson distribution is

as follows:

f(x;λt) =
(λt)ne−λt

n!
(4)

where n is the number of occurrences of an event, λ is the rate of the occurrence and t is the time period of

observation. To use Poisson distribution to model the documents, we attach each term with an independent Poisson

process. In other words, we consider the frequency counts of the n unique terms in the corpus as n different types of

events, sampled from n independent homogeneous Poisson processes.

Suppose t is the time period during which the author composed the text. With a homogeneous Poisson pro-

cess, the frequency count of each event, i.e., the number of occurrences of wi, follows a Poisson distribution with

associated parameter λit, where λi is a rate parameter characterizing the expected number of wi in a unit time. In the

literature, we usually set t to the length of the text either document or the query, i.e., t = |w|. Therefore, for term wi,

the frequency of wi in text w is:

P (c(wi,w)|Λw) =
(λi|w|)c(wi,w)e−λi|w|

c(wi,w)!

Notice, even if a term does not appear in the document, we still can assign probability to it. Therefore, we explicitly

model the absence of terms. According to the above equation, the likelihood of w to be generated from such Poisson

Processes can be written as:

P (w|Λ) =
n∏

i=1

(λi|w|)c(wi,w)e−λi|w|

c(wi,w)!

where |w| =
∑n

i=1 c(wi,w). Note, the parameter λi is for each term wi and therefore it is across documents. In order

to estimate these parameters, we need the likelihood for the whole corpus as follows:

L(Λ) =
m∏

k=1

n∏

i=1

(λi|wk|)
c(wi,wk)e−λi|wk|

c(wi,wk)!

The MLE estimator can be obtained as follows:

λ̂i =

∑m
k=1 c(wi,wk)∑m

k=1 |wk|
(5)

Similarly, once we have the estimated model, the likelihood that a query q is generated from Λd can be written as:

p(q|d) =
∏

w∈V

p(c(w, q)|Λd)

1.4 Discussion

For Query Likelihood Language Models, two major steps are usualy performed: First, we have to use the observation

d to construct our estimate of the underlying document language model θD. Second, we can compute the probability

P (Q|θD) of observing Q as a random sample from θD.

2 Smoothing in Language Models

3 Probabilistic Distance Language Models
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