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1 Basic Model

We use X; (|X| = N) to represent i-th feature of a data instance. Y; (|Y'| = M) is the label of the I-th data instance
in the corpus. We want to model the probability that given a feature vector X; how likely the label is Y; = k, namely
P(Y; = k|X;). In this section, we only consider the two-class case.
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We want to model the likelihood of the total data as follows:
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There is no closed-form of the maximum solution of this total likelihood. We use iterative algorithms to obtain the
global maximum (e.g., Gradient Descent):
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2 L2 Regularization

In order to overcome the problem of over-fitting, we can incorporate a L2 regularizer into the objective function (the

likelihood of the data):
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Thus, the derivative with one additional penalty term is :
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3 L1 Regularization

We also can incorporate L1 regularizer into the objective function:
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Although this objective function is convex, it is not differentiable. Though simple iterative algorithms cannot be
applied, see references for more details.



