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1 Basic Model

We use Xi (|X | = N ) to represent i-th feature of a data instance. Yl (|Y | = M ) is the label of the l-th data instance

in the corpus. We want to model the probability that given a feature vector Xl how likely the label is Yl = k, namely

P (Yl = k|Xl). In this section, we only consider the two-class case.
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We want to model the likelihood of the total data as follows:
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There is no closed-form of the maximum solution of this total likelihood. We use iterative algorithms to obtain the

global maximum (e.g., Gradient Descent):
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2 L2 Regularization

In order to overcome the problem of over-fitting, we can incorporate a L2 regularizer into the objective function (the

likelihood of the data):

W ← argmax
W

M
∑

l

logP (Y l|X l,W )−
λ

2
||W ||2

Thus, the derivative with one additional penalty term is :
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3 L1 Regularization

We also can incorporate L1 regularizer into the objective function:

W ← argmax
W

M
∑
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logP (Y l|X l,W )− λ||W ||1

Although this objective function is convex, it is not differentiable. Though simple iterative algorithms cannot be

applied, see references for more details.

2


