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1 Basic Model

Let us assume the input is a set of vectors xi = {xi1, xi1, ..., xin} where each xij is a item in feature vector (For

convenience, xi1 = 1). For each input vector, we have a real-valued output variable yi associated to the input. We

assume that each output variable is “generated” by the input through the following linear equations:

yi = f(~xi) =

n
∑

j=0

θjxij (1)

Our problem is how to determine the value of each coefficient θj . In order to estimate those values, we usually use a

cost function which aims to minimize the residuals:

C = argmin
θ

1

2

m
∑

i=0

(yi − f(~xi))
2
= argmin

θ

1

2

m
∑

i=0



yi − θ0 −
n
∑

j=1

θjxij





2

(2)

2 Iterative Algorithms

In order to solve Equation 2, in this section, we introduce two iterative algorithms. Both algorithms are based on the

simple updating rule:

θj ⇐ θj − α
∂C

∂θj

, which requires the gradients as follows:

∂C

∂θj
= [yi − f(~xi)](−xij)

= (f(~xi)− yi)xij

Therefore, the first algorithm called batch gradient descent is shown below:

Repeat until convergence {

θj ⇐ θj + α

m
∑

i=0

(yi − f(~xi))xij (for every j)

}
The second algorithm is called stochastic gradient descent, shown as follows:

Loop {
for i = 1 to m {
θj ⇐ θj + α(yi − f(~xi))xij (for every j)

}
}
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3 L2 Regularization

For some problems, we would like to impose a penalty on the size of the coefficients. One popular method is to use

L2 norm penalty. L2 regularized linear regression is also called Ridge regression. We can write the cost function as

follows:

C = argmin
θ

1

2

m
∑

i=0



yi − θ0 −
n
∑

j=1

θjxij)





2

+
λ

2

n
∑

j=1

θ2j (3)

Note, we do not shrink θ0 and instead we use the following pre-process steps:

• xij ⇐ xij − xj

• θ0 ⇐ ∑m

i=0
yi/M

In other words, we estimate all coefficients without intercept. We can also use both algorithms introduced above to

obtain the solutions. Here, we show the gradients as follows:

∂C

∂θj
= [yi − f(~xi)](−xij) + λθj

= (f(~xi)− yi)xij + λθj

Therefore, the basic updating rule is:

θj ⇐ θj + α[(yi − f(~xi))xij − λθj ]

4 Matrix Representation

We can re-write Equation 2 in matrix form as follows:

C = argmin
θ

1

2
(y −Xθ)T (y −Xθ)

Rather than using iterative algorithms, we can indeed obtain the closed form solutions as follows:

∂C

∂θ
= XT (y −Xθ) = 0

⇒ θ̂ = (XTX)−1XTy

Similarly, we can have the matrix form for Ridge regression as follows:

C = argmin
θ

1

2
(y −Xθ)T (y −Xθ) +

λ

2
θT θ

We also obtain the closed form solution for Ridge regression as follows:

∂C

∂θ
= XT (y −Xθ) + λθ = 0

⇒ θ̂ = (XTX+ λI)−1XTy

5 Probabilistic Interpretation

Before we derive the probabilistic interpretation of linear regression, we first look at one property of Normal Distri-

butions. If a random variable X has a normal distribution N(θ, σ2), a new random variable aX + b has a normal
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distribution N(aθ + b, a2σ2). Now, let us focus on our assumption, the response yi is a linear function of a set of

features ~x:

yi =

n
∑

j=0

θjxij + εi (4)

This Equation is slightly different from our original Equation 1 that we have an additional term εi to represent the

error between our estimation and the true value. Now, let us assume that all errors has a Normal Distribution N(0, σ2)
where the variance is a fixed value. Therefore, we can immediately know that yi will also follow a Normal Distribution

N(θTx, σ2) by using the property we introduced at the beginning of the section:

p(yi|xi; θ) =
1√
2πσ

exp

(

− (yi − θTxi)
2

2σ2

)

This is only for one sample. The probability for the whole data set (likelihood) is as follows:

L(θ) =
m
∏

i=0

1√
2πσ

exp

(

− (yi − θTxi)
2

2σ2

)

We want to maximize this probability and the estimator obtained is usually called Maximum Likelihood Estimator

(MLE). Here, we work with log of the likelihood function:

logL(θ) = m log
1√
2πσ

− 1

σ2

1

2

m
∑

i=0

(yi − θTxi)
2

Note, the first term is a constant if we treat σ2 as a fixed value and therefore maximizing logL(θ) is equivalence to

minimizing:
m
∑

i=0

(yi − θTxi)
2

which we recognize to be our basic model (Equation 2).
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