
Notes on Modularity

Liangjie Hong

January 7, 2010

1 Modularity
The main idea behind Modularity is that the links within a community is higher than the expected links in that com-
munity. Thus, we can use a function named Q to denote the difference between real number of links and the expected
links:

Q = (number of edges within communities)− (expected number of such edges) (1)

Let us useAij to denote the links between node i and j where it is 1 meaning there exists a link from i to j. In addition,
let us use Pij to denote the expected number of links between i and j. We use gi to indicate which community node i
belongs to. Therefore, the Q function can be formulated as :

Q =
1

2m

∑
i

∑
j

(Aij − Pij)δ(gi, gj) (2)

where δ(x, y) = 1 if x = y and m is the total number of links in the graph. Note, the term 1
2m is totally conventional

and it is not a requirement in the Modularity optimization since it is a constant for a fixed graph.

Now, the question becomes how to determine Pij . Several criteria that Q needs to satisfy. First, if all nodes
are in the same community, Q should be 0, which indicates that :∑

ij

Aij =
∑
ij

Pij = 2m (3)

. Second, although under this assumption, there are still many null models to choose, we want the expected number of
links for node i is exactly the same as the real number of links that node i has, meaning :∑

j

Pij = ki (4)

. Third, the probability that a link links to node i only depends on the total links node i has, ki. We use f(ki) to denote
this probability. Therefore, Pij can be represented as :

Pij = f(ki)f(kj) (5)

. Combine the results from Equation 4 and Equation 5, we can obtain:∑
j

Pij = f(ki)
∑

j

f(kj) = ki (6)

. Since we do not know the exact form of function f , we can not direct compute
∑

j f(kj). Let us just assume
f(ki) = Cki. Therefore, plug back into Equation 5, we can obtain:

Pij = C2kikj (7)

1



. Furthermore, combined with Equation 3, we can get :∑
i

∑
j

Pij =
∑

i

∑
j

C2kikj = 2m (8)

C2
∑

i

ki

∑
j

kj = 2m (9)

C24m2 = 2m (10)

C2 =
1

2m
(11)

where
∑

i ki = 2m. Therefore,

Pij =
kikj

2m
(12)

. So, even we do know know the exact form of function f , we obtained the expected links between node i and j as
shown in Equation 12. Using this knowledge, Equation 2 becomes

Q =
1

2m

∑
i

∑
j

(Aij −
kikj

2m
)δ(gi, gj) (13)

. This is the definition of Modularity usually used in literature.

2 Leading Eigenvector Method
In the previous section, we have seen how Modularity is defined. First, we want to see some structures of Modularity
definition. To simplify the notation, we first use si = 1 to denote whether node i belongs to community 1 and si = −1
to denote node i belongs to community 2. We are only dealing with two communities now. It is easily to show that

δ(gi, gj) =
1
2

(sisj + 1) (14)

Plug it back into Equation 13, we can obtain:

Q =
1

4m

∑
i

∑
j

(Aij −
kikj

2m
)(sisj + 1)

=
1

4m

∑
i

∑
j

(Aij −
kikj

2m
)sisj + (Aij −

kikj

2m
)

=
1

4m

∑
i

∑
j

(Aij −
kikj

2m
)sisj

because of Equation 3. If we use Bij to denote Aij − kikj

2m , we can obtain a much simpler form :

Q =
1

4m
sTBs (15)

Two important conclusion:

1. B is a symmetric matrix.

2. B has n normalized eigenvectors and they are orthogonal with each other.

2



Due to the second conclusion, we can represent s as a linear combination of n normalized eigenvectors as s =
∑

i aivi

where vi is the ith normalized eigenvector. The coefficients ai can be obtained as follows:

s =
∑

i

aivi

vT
i s = vT

i

∑
j

ajvj

vT
i s =

∑
j

ajv
T
i vj

vT
i s = ai

where vT
i vi = 1 and vT

i vj = 0. Since sT s = n, we can also verify that :

s =
∑

i

aivi

sT s = sT
∑

i

aivi

n =
∑

i

sTaivi

n =
∑

i

ais
T vi

n =
∑

i

a2
i

where ai = sT vi. Note, ai is a scalar. Therefore, Equation 15 becomes :

Q =
1

4m

∑
i

aiv
T
i B

∑
j

ajvj

=
1

4m

∑
i

aiv
T
i

∑
j

ajλjvj =
1

4m

∑
i

∑
j

aiajλjδij

=
1

4m

∑
i

a2
iλi

where vT
i vj = δij (Conclusion 2) and λ is the eigenvalue of matrix B.

From this formulation, we can see that to maximize Q is one of choosing the quantities a2
i so as to place as

much as possible of the weight in the sum corresponding to the largest (most positive) eigenvalues. As with ordinary
spectral partitioning, this would be a simple task if our choice of s were unconstrained (apart from normalization):
we would just choose s proportional to the leading eigenvector v1 of the modularity matrix. But the elements of s
are restricted to the values si = 1, which means that s cannot normally be chosen parallel to v1. Again as before,
however, good approximate solutions can be obtained by choosing s to be as close to parallel with v1 as possible,
which is achieved by setting si = +1 if u(i)

i ≥ 0 and si = −1 otherwise. Therefore, we obtain a simplest algorithm
for community detection: find the eigenvector corresponding to the most positive eigenvalue of the modularity matrix
and divide the network into two groups according to the signs of the elements of this vector.

3



3 Other Eigenvectors

4 Original Definition
The original definition of Modularity, which is not the same as the Equation 13, is more straightforward and intuitive.
It is like this :

Q =
∑

i

(eii − a2
i ) (16)

where eij is the fraction of edges in the community i to community j and ai =
∑

j eij that can be understood as
the total degree of community i. Again, the rationale is the traction of edges that fall within communities, minus
the expected value of the same quantity if edges fall at random without regard for the community structure. In fact,
Equation 13 and 16 is “equivalent” (not exact the same). First, it is easily to see that δ(cv, cw) =

∑
i δ(cv, i)δ(cw, i).

Therefore, from Equation 13:

Q =
1

2m

∑
v

∑
w

(Avm −
kvkw

2m
)δ(cv, cw)

=
1

2m

∑
v

∑
w

(Avm −
kvkw

2m
)
∑

i

δ(cv, i)δ(cw, i)

=
∑

i

[
1

2m

∑
v

∑
w

Avwδ(cv, i)δ(cw, i)−
1

2m

∑
v

kvδ(cv, i)
1

2m

∑
w

kwδ(cw, i)]

The first term 1
2m

∑
v

∑
w Avwδ(cv, i)δ(cw, i) is essentially equal to eij , which is the fraction of edges that join

vertices in community i to community j. The element of 1
2m

∑
v kvδ(cv, i) in the second term is the fraction of edges

that are attached to vertices in community i, which is indeed ai. Thus, two formulation is equivalent. Note, in the
early development of Modularity, the coefficent 1

2m is usually ignored. However, definition 13 is more accurate.

5 Greedy Algorithm
Most greedy approximation of Modularity is based on Equation 16. It is not totally surprising because the two parts of
the equation only require local information. One way is to measure the difference of function Q if we join community
i with community j. If the function Q increases, then we join them; otherwise, not. ∆Q can be computed as follows:

∆Q = [(eii + eij + eji + ejj)− (ai + aj)2]− [(eii − a2
i ) + (ejj − a2

j )]

= eij + eji − 2aiaj

Note, here we are joining two communities. Another cheaper way is to join an isolated node i into a community j. In
this case, ∆Q can be calculated as:

∆Q = [(ejj + 2k→j
i )− (aj + ki)2]− [(ejj − a2

j )− k2
i ]

= 2k→j
i − 2ajki

where k→j
i represents the number of links that node i links to community j. Note, for an isolated node i, eii = 0.

Remember, from Section 4, we can further know that the more accurate form is:

∆Q =
2

2m
(k→j

i − ajki

2m
)

∝ k→j
i − ajki

2m

The algorithm based on this equation can be applied to millions of nodes.

4



6 Directed Graph
Up to now, we mainly focus on Undirected Graph. Similar arguments can be applied to Directed Graph too. Our
starting point is again Equation 2:

Q =
1
m

∑
i

∑
j

(Aij − Pij)δ(ci, cj) (17)

One difference is that the normalizing coefficient becomes m because
∑

ij Aij = m for a directed graph. Again,∑
ij Pij = m should be satisfied. Now, Equation 4 becomes :∑

j

Pij = kout
i (18)

where kout
i is the out degree of ki. Therefore, Equation 5 becomes:

Pij = f(kout
i )f(kin

j ) (19)

. Combining the above two, we get: ∑
j

Pij = f(kout
i )

∑
j

f(kin
j ) = kout

i

We do not know function f . So, we assume f(kout
i ) = C1k

out
i and f(kin

i ) = C2k
in
i . Thus,

Pij = C1C2k
out
i kin

j →
∑
ij

Pij = m = C1C2m
2

So, it is obvious that C1C2 = 1
m . Therefore,

Pij =
kout

i kin
j

m

and we plug it back to Equation 17 obtaining:

Q =
1
m

∑
i

∑
j

(Aij −
kout

i kin
j

m
)δ(ci, cj) (20)

This is the “directed” version of Modularity. Now, similar as Section 4, we can obtain a simpler version of the
definition:

Q =
1
m

∑
v

∑
w

(Avw −
kout

v kin
w

m
)δ(cv, cw)

=
1
m

∑
v

∑
w

(Avw −
kout

v kin
w

m
)
∑

i

δ(cv, i)δ(cw, i)

=
∑

i

[
1
m

∑
v

∑
w

Avwδ(cv, i)δ(cw, i)−
1
m

∑
v

kout
v δ(cv, i)

1
m

∑
w

kin
w δ(cw, i)]

Again,
∑

v

∑
w Avwδ(cv, i)δ(cw, i) is the number of links in community i, which can be viewed as eii.∑

v k
out
v δ(cv, i) is the out-degree of community i, defined as aout

i and
∑

w k
in
w δ(cw, i) is the in-degree of commu-

nity i, defined as ain
i . Therefore, the simpler version is :

Q =
∑

i

(eii − aout
i ain

i ) (21)

5



Now, let us to see how Greedy algorithms become according to Equation 21.

∆Q = [(eii + eij + eji + ejj)− (aout
i + aout

j )(ain
i + ain

j )]− [(eii − aout
i ain

i ) + (ejj − aout
j ain

j )]

= eij + eji − aout
i ain

j − aout
j ain

i

Similarly, if we want to join an isolated node i to community j, the algorithm becomes:

∆Q = [(ejj + k→j
i + k←j

i )− (kout
i + aout

j )(kin
i + ain

j )]− [(ejj − aout
j ain

j )− kout
i kin

i ]

= k→j
i + k←j

i − kout
i ain

j − aout
j kin

i

where k→j
i is the number of links from node i to community j and k←j

i is the number of links from community j to
node i. If we incorporate normalizing coefficient:

∆Q =
k→j

i + k←j
i

m
−

(kout
i ain

j + aout
j kin

i )
m2

∝ (k→j
i + k←j

i )−
(kout

i ain
j + aout

j kin
i )

m

6


