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ABSTRACT

In recent years social media have become indispensable tools for
information dissemination, operating in tandem with traditional
media outlets such as newspapers, and it has become critical to
understand the interaction between the new and old sources of
news. Although social media as well as traditional media have at-
tracted attention from several research communities, most of the
prior work has been limited to a single medium. In addition tempo-
ral analysis of these sources can provide an understanding of how
information spreads and evolves. Modeling temporal dynamics
while considering multiple sources is a challenging research prob-
lem. In this paper we address the problem of modeling text streams
from two news sources - Twitter and Yahoo! News. Our analysis
addresses both their individual properties (including temporal dy-
namics) and their inter-relationships. This work extends standard
topic models by allowing each text stream to have both local top-
ics and shared topics. For temporal modeling we associate each
topic with a time-dependent function that characterizes its popular-
ity over time. By integrating the two models, we effectively model
the temporal dynamics of multiple correlated text streams in a uni-
fied framework. We evaluate our model on a large-scale dataset,
consisting of text streams from both Twitter and news feeds from
Yahoo! News. Besides overcoming the limitations of existing mod-
els, we show that our work achieves better perplexity on unseen
data and identifies more coherent topics. We also provide analysis
of finding real-world events from the topics obtained by our model.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous; H.3.3
[Information Storage and Retrieval]: Information Search and
Retrieval—clustering
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1. INTRODUCTION
Social-networking tools such as Facebook, LinkedIn and Twitter,

have become the communication tools of choice for a large number
of online users. Such tools are increasingly used for disseminating
breaking news and eyewitness accounts, and even for organizing
flash mobs and protest groups. For instance, Twitter was heavily
used in a number of international events, such as the Iran election
in 2009, the Haiti earthquakes in 2010, and the tsunami in Japan in
2011. More recently, social networking services were instrumental
in facilitating the political upheavals in the Middle East. Social
media as well as the on-line publishing of more established media
(e.g., newspapers, magazines and televison) have attracted a lot of
attention from both researchers and product developers.

This increasing use of social media has resulted in a refocus-
ing of research activities onto related problems, many of which
are new. For example, there exists an argument as to whether so-
cial media have influenced traditional media sources and in what
sense, or vice versa. In addition, people are wondering whether
the topics that are shared and discussed on social media signifi-
cantly differ from traditional information sources and how these
topics are transferred from one source to another. Moreover, ques-
tions about the differences between various types of social media
(e.g., blogs, community-based questions-and-answer portals and
microblogging services) have been raised continuously both in re-
search communities and industry. Effectively addressing these is-
sues requires the ability to analyze multiple types of information
sources over time.

Problems similar to these have been attacked from various per-
spectives. For modeling the temporal dynamics of information
Kleinberg et al. [14, 15] proposed methods to track the volume of
a single term over time. Their later work (e.g., [16]) attempts to
monitor the temporal dynamics of “memes” by which the authors
mean sentence fragments representing concepts. In addition work
has been done to study the dynamics of blogs [9], of online knowl-
edge sharing communities [2], of news articles and stories [16], and
of microblog services [13]. While most of the above-mentioned
works focused on a single media source, some authors [31, 27, 28]
modified Probabilistic Latent Semantic Analysis (PLSA) [11] to si-
multaneously model documents from different text streams. There
is also some recent work in comparing social and traditional me-
dia. Zhao et al. [33] tried to obtain latent topics from Twitter and
New York Times (NYT) news articles by using topic models. Two
different topic models were used to learn the topics from the two
sources separately and heuristics were then applied to obtain both
common and local topics. Attempts have been made to extend topic



models to incorporate temporal dynamics and topic evolution (e.g.,
[4, 26]). In addition to research projects, commercial products also
provide tools to search and browse the dynamics of queries1, news
articles and web traffic2, and microblogging updates3.

While existing research offers different methods to monitor and
track correlated information sources over time, many of the pro-
posed approaches suffer from significant drawbacks. For instance
most of the work on tracking information sources primarily focuses
on only one type of source. Given the multiplicity of media chan-
nels however, it is potentially more useful to understand multiple
information sources simultaneously. Also, tracking a single word
or a meme can be quite limiting. Further, most models that con-
sider multiple text collections either have model parameters requir-
ing manual adjustment or have theoretical limitations (see our dis-
cussion in Section 2). In addition temporal factors are either not
incorporated in the models or are heuristically embedded. For tem-
poral topic models most approaches adopt a Markovian assumption
that may not be suitable for social media. Indeed, none of them uti-
lize recent research findings of temporal variations of information
in social media [16, 30].

In this paper we address the problem of modeling multiple text
streams, including their temporal dynamics, in a principled man-
ner. Our work builds on recent work in both information dynamics
and topic models. More specifically, we extend topic models by
allowing each text stream to have both local and shared topics. For
temporal modeling, we associate each topic with a time-dependent
function that characterizes its popularity over time. By combining
the two models, we effectively model temporal dynamics of multi-
ple correlated text streams in a unified framework. To summarize
the contributions of this paper, the work we describe includes:

• a topic model that discovers common and uncommon topics
from multiple text collections

• a temporal model that characterizes the dynamic of topics
over time

• a simple and potentially scalable algorithm for mining tem-
poral topics

• interesting results from Yahoo! News and Twitter obtained
by applying our model.

The remainder of this paper is organized as follows. Section 2 pro-
vides the background and related work. In Section 3 and Section 4,
we discuss our model in detail. Section 5 provides experimental re-
sults on real-world datasets. We conclude our paper with Section 6,
which discusses both conclusions and future work.

2. RELATED WORK
Mining common topics and their temporal dynamics from mul-

tiple text streams can be loosely decomposed into the two inde-
pendent tasks of (1) recovering topics and (2) characterizing their
temporal dynamics. We review these two lines of related work.

Based on PLSA, Wang et al. [27] introduced an observed-time-
stamp variable into the generative model to incorporate temporal
dynamics. In addition several heuristics were applied to smooth
topics in consecutive time periods. Later, Wang et al. [28] fol-
lowed a similar idea and used an artificial time-synchronization op-
timization process in their model to re-organize the time stamps of
all documents so that documents with the same time stamp would

1http://www.google.com/insights/search/
2http://www.google.com/trends
3http://www.google.com

share similar topics. We argue that the constraint imposed by this
synchronization is unrealistic. Note that these two papers do not
differentiate between common topics and topics that only occur in
a single text stream. Moreover, since both models are based on
PLSA, they have the tendency to overfit the data. Furthermore, both
models are not well-defined generative models [5] and no assump-
tions on how topic distributions and per-document topic-proportion
distributions change over time were made in these models. In a re-
cent paper, Zhang et al. [32], in addressing the same problem, pro-
posed a non-parametric model in which a Markovian assumption is
made regarding the temporal dynamics of document-topic distribu-
tions. As mentioned in the previous section, however, according to
recent results on information propagation and temporal variations
[16, 30], this assumption may not be appropriate for social media.

Independent of temporal factors, two basic approaches to topic
discovery from correlated text streams exist in the topic model-
ing literature. Zhai et al. [31] proposed two variants of the same
idea to tackle the problem of modeling multiple text streams. One
variant assumes that each document in a text stream is generated
by a background language model and a set of topics. Both the
background language model and topics are multinomial distribu-
tions over words shared across multiple text streams. Since they
are shared across all streams, common topics are difficult to iden-
tify. The second variant also assumes that each document in a text
stream is generated by a background language model and a set of
topics. Once a term is chosen to be generated by topics, a topic in-
dex is first selected followed by a second-level decision regarding
whether the word is generated by a common or a local topic. The
model can then explicitly handle common and local topics among
multiple streams. Common and local topics are aligned under the
same set of indices however, forcing the total number of topics to
be the same for all streams. In addition the background language is
the same across all text streams, which is too inflexible for the joint
modeling of disparate sources such as Twitter and Yahoo! News.
Also, per-document topic-proportion parameters must be manually
tuned in experiments, which is impractical for real applications.
The first variant inspired models introduced in [27, 28] and the sec-
ond variant was extended to a fully Bayesian formulation by Paul
et al. [22, 23], in which the topic proportion parameters were au-
tomatically estimated from the inference algorithm but local topics
among different text streams were forcibly put under the same set of
indices. It is therefore possible that unrelated topics will be brought
together under the same topic index due to this constraint.

We briefly review some of the recent extensive work on modeling
temporal dynamics in topic models. Early work on incorporating
temporal evolution usually made a Markovian assumption by us-
ing either a state-space model (e.g., [4, 25]) or a linear model (e.g.,
[24]). Besides the Markovian assumption, Wang et al. [26] intro-
duced a beta distribution over timestamps using a non-Markovian
topic model. Nallapati et al. [20] and Iwata et al. [12] focused on
the problem of modeling topics spread on a timeline with multiple
resolutions, namely how topics are organized in a hierarchy and
how they evolve over time. Ahmed and Xing [1] proposed a non-
parametric model to address the birth and death of topics over a
timeline using a Markovian assumption. The datasets used in these
papers are several orders of magnitude smaller than the one we used
in this paper.

3. CORRELATED TEXT STREAMS

3.1 Model Description
Our correlated-text-stream model (Collection Model) is

an extension of Latent Dirichlet Allocation [5] (LDA). In our



Collection Model, we have a set S of n text streams. As-
sociated with each stream s ∈ S is a set Ts of local topics and
associated with all streams is a set Tc of common topics. Thus the
total number of topics in the model is (

∑

s
|Ts|)+|Tc|. As in LDA,

each topic k is defined as a multinomial distribution over a fixed
vocabulary V , denoted as φk. Local topics φ(s) are drawn from
stream-dependent Dirichlet distributions Dir(β(c)) while common

topics φ(c) are drawn from a stream-independent Dirichlet distri-
bution Dir(β(c)). Each document d in a stream s, has an associ-

ated Bernoulli distribution with parameter ηd,s ∼ Beta(γ
(s)
s , γ

(c)
s ),

indicating how likely the document is to choose local rather than
common topics. For convenience we let ηd,c (where ηd,c =
1 − ηd,s) represent how likely a document d is to choose com-
mon topics. The random variable xd,i ∼ Bernoulli(ηd,s) takes on
one of the two values “local” or “common” for each word posi-
tion i in document d. In addition, each document has two multi-
nomial distributions with parameter vectors θ

(s)
d ∼ Dir(αs) and

θ
(c)
d ∼ Dir(αc) over Ts and Tc respectively, where αs and αc

represent the two Dirichlet parameter vectors. The document gen-
eration process associated with this model is as follows:

1. For all common topics Tc, draw φ(c) ∼ Dir(β(c))

2. For a particular stream s

(a) For all local topics Ts, draw φ(s) ∼ Dir(β(s))

(b) For each document d in s

i. Draw Bernoulli parameter ηs,d ∼ Beta(γ
(s)
s , γ

(c)
s )

ii. Draw θ
(s)
d ∼ Dir(αs)

iii. Draw θ
(c)
d ∼ Dir(αc)

For each word position i in document d

A. Draw xdi ∼ Bernoulli(ηs,d)

B. Draw a topic zdi ∼ Multinomial(θ
(xdi)
d )

C. Draw a word wdi ∼ Multinomial (φ
(xdi)
zdi )

3.2 Inference via Collapsed Gibbs Sampling
In order to estimate the hidden parameters in the model, we apply

collapsed Gibbs sampling using the following updating rules:

p(xdi = s, zdi = t) ∝

cd,s−i + γ
(s)
s

Nd + γ
(s)
s + γ

(c)
s − 1

md,z−i + αz
∑

z∈Ts
md,z−i + αz

nz,w−i + β
(s)
w

∑V
w nz,w−i + β

(s)
w

p(xdi = c, zdi = t) ∝

cd,c−i + γ
(c)
s

Nd + γ
(s)
s + γ

(c)
s − 1

md,z−i + αz
∑

z∈Tc
md,z−i + αz

nz,w−i + β
(c)
w

∑V
w nz,w−i + β

(c)
w

(1)

where cd,s−i is the number of words in document d assigned to
local topics (excluding wdi), md,z−i is the number of words in
document d assigned to topic z (excluding the current one) and
nz,w−i is the number of occurrences of term w assigned to topic
z (excluding the current one). By using the samples from Gibbs

sampling, parameters {θ
(s)
d , θ

(c)
d }, {φs, φc} and {ηd,s, ηd,c} can

be effectively estimated as follows:

θ
(x)
d,z =

md,z + αz
∑

z∈Tx
md,z + αz

, x ∈ {s, c} (2)

φ(x)
z,w =

nz,w + βw
∑

z∈Tx
nz,w + βw

, x ∈ {s, c} (3)

ηd,x =
cd,x + γ

(x)
s

Nd + γ
(s)
s + γ

(c)
s

, x ∈ {s, c} (4)
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Figure 1: This figure shows the total volume (term instance

counts) of Twitter and Yahoo! News as functions of time over

the first 120 hours (GMT) of May 2010.

The formalism of our model resembles in spirit that of
Chemudugunta et al. [6] where each term is “split” into corpus-
level “background” topics, document-level “special” topics and
normal topics. However, their work is only for a single corpus
while our model fits multiple collections. Hyper-parameters like
β, α and γ can be estimated using standard methods introduced by
Minka [19].

4. MODELING TEMPORAL DYNAMICS

4.1 Temporal Dynamics for Topics
In this section we review a temporal model for news articles,

introduced in [16] and present an alternate derivation. Before pro-
ceeding however, it bears pointing out that, as stated in [16], “rig-
orous analysis of the proposed model appears to be quite complex.”
The referred-to model embodies two driving forces for news-article
publishing which the authors refer to as imitation and recency. The
authors assert that this pair constitutes a minimum set for the pur-
pose of explaining the temporal dynamics n(t) of news-article pub-
lishing, but that the real situation is undoubtedly more complicated.
We agree that there are factors beyond just these two. For exam-
ple consider the Twitter and Yahoo! News total-volume data plotted
in Figure 1. Note the enormous surge in the volume of news arti-
cles beginning after the Kentucky Derby4, the premier American
thoroughbred-horse race, and continuing for several hours. This
clearly demonstrates significant elasticity in the volume capacity
of the various sources contributing to Yahoo! News.

We start by assuming the following setting, which is a response
that looks like a proportional controller5 except that the “control
point” nmax is not a constant.

dn

dt
= λ [nmax − n(t) ], (5)

where nmax is a function of both t and n. The form (5) captures
the saturation effect mentioned above. The saturation value nmax

varies with both n and t, however. We assume that it is the product
of a term (ζn(t)) embodying the imitation effect mentioned above
and a term (νt−1) embodying the recency effect, where ζ and ν
are adjustable parameters. Substituting the resulting expression for
nmax into (5), we obtain:

dn

dt
= λn(t) [ ζνt−1 − 1 ] (6)

4
http://en.wikipedia.org/wiki/Kentucky_Derby

5See http://en.wikipedia.org/wiki/Proportional_control.

http://en.wikipedia.org/wiki/Kentucky_Derby
http://en.wikipedia.org/wiki/Proportional_control


Figure 2: Overall Algorithm
Initialize Gibbs Sampler
while Not Converging do

E-step

For all documents in all text streams, update topic assignments using
(1)
M-step

Update α, β and γ values through the method introduced in [19]
for Each local and common topic do

1) Fit gaussian function to α values
2) Fit “temporal gamma” function by using the parameters from the
previous step
3) Re-calculate α values for topic k by using fitted function

end for

end while

Next we solve this differential equation, assuming that the event
occurs at t = 0 for convenience. For an event occurring at time t0
let t → t − t0. We must also ensure that our solution satisfies the
following boundary conditions.

1. n(t) = 0 for t ≤ 0.

2. n(t) ≥ 0 for t > 0.

3. n(t) → 0 as t → ∞.

The solution of (6) proceeds in the following steps.

1

n

dn

dt
= λ [ ζνt−1 − 1 ],

∫ t

1

1

n

dn

dt
dt = λζν

∫ t

1

t−1 dt − λ

∫ t

1

dt,

lnn(t) = lnn(t = 1) + λζν ln t − λt + λ,

lnn(t) = lnA + q ln t − λt,

n(t) = A tq e−λt, (7)

where A := n(t = 1) eλ and q := λζν. Next we apply our
boundary conditions to the solution given in (7). First, to enforce
condition 1 we multiply the solution of (7) by the Heaviside unit
step function u(t), which equals 0 for t < 0 and 1 for t > 0. Thus,
we have

n(t) = u(t)Atq e−λt. (8)

Condition 2 requires that A > 0 and Condition 3 requires that
λ > 0. The form of (8) has been demonstrated to capture spikes of
news articles and social-media blogs [16, 30].

4.2 Incorporating Temporal Dynamics
In this section we describe how to incorporate the temporal

model described above into our Collection Model and then
introduce the inference approach to estimate the parameters in the
model. We assume that the temporal dynamics of each topic are
independent of each other. In other words, the popularity of one
topic does not affect that of the other topics. We realize that this is
a simplified assumption. The basic intuition behind embeding tem-
poral dynamics into the model is to allow certain topics to have a
higher probability of being selected. For example, during the Soc-
cer World Cup in June and July of 2010, news articles and Twit-
ter messages may naturally be more likely to talk about the World
Cup, rather than politics. We encode this notion by associating the
Dirichlet parameters for each topic with a time-dependent function.
This function governs the variation of those parameters and thus
indirectly controls the popularity of the associated topics. More
specifically, for all common topics (with parameters αc) and local

topics (with parameters αs), we let each dimension αk in Dirichlet
parameters α to be associated with the following time-dependent
function.

αk(t) = fk(t) = Akt
qke−λkt (9)

where fk(t) is the temporal model described in Section 4.1. How-
ever, if we naïvely associate αk with fk, the model may face dif-
ficult problems since the temporal model unrealistically assumes
that the starting point of the time t for all topics is time stamp 0.
In other words, different topics should have different starting times
t0. Thus, we modify it into the following form:

fk(t) = Ck + u(t− tk0)(Ak|t− tk0 |
qk exp(−λk|t − tk0 |)) (10)

where t0 is the starting time stamp of the topic, Ak controls the
height of the prior knowledge, qk indicates how quickly the topic
would rise to the peak, λk controls the rate of decay and Ck is the
“noise” level of the topic. We refer to the right hand side of (10) as
the “temporal gamma function”.

The absolute-value function guarantees that the time-dependent
part is only active when t is larger than t0. Additionally, u(t− t0)
is a step function that is 1 for t ≥ t0 and 0 otherwise. In our im-

plementation, a “soft” version of the step function as u(t− t
(k)
0 ) =

1/(1 + exp(−(t − t
(k)
0 )) is used. Intuitively, this equation states

that the prior knowledge of each topic is fixed over time (by the
“noise” level Ck) until a starting point t0 and from that point on it
follows a temporal gamma function controlled by three parameters,
Ak, qk and λk. The crux of the problem is to estimate the values of
these five parameters from the data.

The absolute-value function and the parameter t0 in (10) present
challenges to model fitting (parameter estimation). To address this,
rather than directly fitting fk(t), we use the following heuristic sim-
ilar to that used in [18]. We first fit the following Gaussian function:

αk(t) ≈ gk(t) = C
′

k + A
′

k exp(−(t− µk)
2/2σ2

k), (11)

where µk is the mean and σ2
k is the variance. The resulting parame-

ter values are then used to obtain initial parameter values for fitting
the temporal gamma function of (10). This Gaussian function is
straightforward to fit and its symmetric form allows us to obtain t0
easily. We set the initial values of Ck and Ak in (10) to those ob-

tained by fitting the Gaussian function and we fix t
(k)
0 = µk − σk.

This process simplifies our inference algorithm. Note that the
Gaussian approximation is only used to find initial values of the
parameters including t0. In our later experiments we find that this
approximation gives reasonable initial values.

The outline of our inference algorithm is shown in Figure 2.
Overall, we incorporate the functional optimization problem with
Gibbs sampling into a stochastic EM framework (e.g., similar to
[7]). In the E-step we gather topic assignments and useful counts
by Gibbs sampling through (1). In the M-step we optimize the pro-
posed objective functions to obtain the updated hyper-parameters
for the next iteration. More specifically, the first step is to estimate
the Dirichlet parameters α from counts obtained from Gibbs Sam-
pling. This can be done in several ways [19]. We use Newton’s
method in this step. The second step is to use these α values to fit
the Gaussian function (11) and then, using the parameters from the
fitted Gaussian function as initial values, to fit our temporal gamma
function (10). For both problems we minimize the following ob-
jective functions:

argmin
gk

Gk =
1

2

∑

t

(

αk(t)− gk(t)
)2

(12)

argmin
fk

Fk =
1

2

∑

t

(

αk(t)− fk(t)
)2

(13)
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Figure 3: Perplexity Comparison Between Multiple Models.

Left-hand plot: random 80%/20% train/test split; Right-hand

plot: past/future 20-days/10-days train/test split.

We use the L-BFGS algorithm[17] implemented in GNU/GSL Li-
brary[8], which only requires the first-order gradients to obtain the
optimal values for the parameters in both functions. Note that the
method proposed here is potentially scaleable to very large datasets.
For example LDA-style Gibbs sampling has been scaled to very
large dataset sizes by [21], which is particularly useful for our E-
step. For our M-step a stochastic gradient descent can be used in-
stead of the usual Newton’s method. We denote the whole algo-
rithm as the Temporal Collection model.

5. EVALUATION
We utilize a real-world dataset consisting of Yahoo! News and

Twitter messages from May 2010 to evaluate our method. Since
the original dataset is quite large, we sample news articles and
Tweets proportional to the total volume of each hour in May, re-
sulting in 233,488 news articles and 1,736,350 Twitter messages
in total. We use each hour as a time unit, which starts from
0, the first hour of May 1, 2010 to 720, the last hour of May
30, 2010. All the experiments are based on this dataset. The
models used are (1) Latent Dirichlet Allocation (LDA), (2) Cor-
related Stream Model (Collection), introduced in Section 3,
(3) Temporal Dynamics Topic Model (Temporal), introduced in
Section 4.2 but ignoring multiple collection effects, and (4) Cor-
related Collection Model with Temporal Dynamics (Temporal
Collection), introduced in Section 4.2. For Collection and
Temporal Collection, we set the number of common top-
ics to 20 ∼ 50 (depending on the total number of topics) and
equally divide the remaining topics into all other streams, as lo-
cal topics. We do not compare with other similar methods be-
cause Collection and Temporal Collection can essen-
tially represent the two major directions of previous work discussed
in Section 2.

5.1 Perplexity Evaluation
Following common practice for comparing topic models, we use

perplexity of the held-out test data as our goodness-of-fit measure.

Perplexity is defined as exp
(

−
∑D

d=1

∑Nd
i=1

log p(wd,i|M)
∑

D
d=1

Nd

)

where

wd,i represents the ith term in document d, M is the model and
Nd is the number of words in document d. First, we randomly
sample 80% of the data as the training data and use the remaining
20% as the test data. Although this is a common evaluation pro-
cedure for topic models, it may not reflect real-world scenarios for
temporal text collections because it may give additional undesir-
able advantages to models knowing the “future.” All models are

trained on the same training set and evaluated using the same test
set. In the training phase we obtain topic distributions φ and all
other hyper-parameters. In the testing phase we fix them and per-
form 100 Gibbs-sampling iterations for each document in the test
set, obtaining θd. Using these newly estimated θd, we calculate
p(wd,i|M) =

∑K

z
φk,wθd,k and then compute perplexity. The re-

sult is shown on the left-hand side in Figure 3. The second setting
we choose is closer to real-world scenarios. We train all models on
the first 20 days in May and test the perplexity on the remaining 10
days, shown on the right-hand side in Figure 3. As is evident in the
figure, the perplexity exhibits a minimum with respect to the num-
ber of topics in both settings. As the number of topics is increased
beyond that minimum, overfitting appears to set in, as was also ob-
served in [10]. For both settings Temporal Collection sig-
nificantly outperforms the others.

5.2 Common Topics and Local Topics
Here we manually compare the topics obtained by Temporal

Collection and by LDA to determine which topics are mean-
ingful and to see if any interesting patterns are discovered by the
model. As we described previously, the advantage of Temporal
Collection is to identify common topics among multiple text
collections in a principled manner. Since LDA does not provide
any mechanism for retrieving common topics explicitly, we use
the following heuristic ranking method to indicate the prevalence

of a topic T on both News and Twitter: 1
2

[

n(zT ,News)
∑

T ′ n(zT ′ ,News) +

n(zT ,Twitter)
∑

T ′ n(zT ′ ,Twitter)

]

where n(zT ,News) is the number of tokens

assigned to topic T in News and n(zT ,Twitter) is the number of
tokens assigned to the same topic in Twitter. Basically, this simple
heuristic measures how likely a topic is to be assigned to a token
in both News and Twitter on average. The higher this value is, the
more likely this topic will appear, on average. We rank all the top-
ics obtained by LDA through this method and show the top 5 on
the left top part of Table 1. For Temporal Collection, since
common topics are identified automatically, we just need to rank all
common topics and extract the top ones, by the following criterion:
1
2

(

E[θNews
i ]+E[θTwitter

i ]
)

whereE[θNews
i ] is the expected value

of θi for common topic ti on news and similarly for Twitter. This
equation can be interpreted as the average of the expected value of
topic k appearing in a document on both collections. The quantity
E[θi] can be easily computed by αi∑

k αk
and normalized across all

time epochs. The top 5 common topics are listed on the right top
part of the same table.

The first column and the third column of the Table 1 show the
title of the topics, a label given by the authors for easier interpreta-
tion. All topics (the second and the fourth column) are represented
by the top ranked terms by φz,w. Note that all these models are fit
in an unsupervised manner in which no explicit human labels are
available beforehand. From the results it is clear that both meth-
ods rank some potential common topics highly, such as “Oil Spill”
and “Financial Crisis”. However, it is also noticeable that simple
ranking heuristics may not give appropriate scores to the topics.
For instance the ranking scheme may prefer the topics from a col-
lection that is significantly larger than the other, even if a topic
only appears in one collection. For example, the two “junk” top-
ics shown on the left are examples of this situation. In addition,
if two topics are common to both data collections but one is pop-
ular among a lot of short documents (e.g., Twitter messages) and
the other is prevalent in a relative small number of long documents
(e.g., news articles), some sort of normalization schemes is clearly
needed. Although there exist some sophisticated ranking heuristics



Table 1: Example Topics from Our Dataset
Comparison of Top Ranked Common Topics between LDA (Left) and Temporal Collection (Right)

Title Top Terms Title Top Terms

“finance” percent billion bank market greece financial banks debt “finance” percent billion bank greece financial debt banks euro crisis

“crime” police car times vehicle found york square street bomb “oil spill” oil gulf spill coast drilling mexico water louisiana

“junk” link cont via #jobs #fb album super live wii #tcot #news “world cup” world cup team league final players south season club

“oil spill’ oil gulf spill coast mexico gas drilling sea water “health care” health medical care cancer hospital patients study research

“junk” dont people cant thats youre bad look tell talk “UK election” minister party prime cameron political leader president

Comparison of Local Topics between News (Left) and Twitter (Right)

News Twitter

Title Top Terms Title Top Terms

“crime” police car times vehicle found york square street “social media” blog video post check news via twitter online facebook

“US election” election party law president vote political campaign “hash tags” #fb info #quote #fail #ge #lol #ff #twibbon cont

“China” minister china south india north chinese korea indian “non-English” les pas pour sur une cest est qui avec bien suis tout faire

“jobs” budget tax million money pay bill federal increase cuts “junk” cant this wait watch next believe gonna watching just

“education” school students schools board education district college “junk” that would have could never were wish there
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Figure 4: Temporal dynamics of “Kentucky Derby” on News

and Twitter (X-axis is the hours in May, 2010. Y-axis is p(t|z)).

[3], we argue that our model can handle these issues in a more prin-
cipled way by modeling common topics explicitly. For instance the
α values for common topics can shed light on how popular these
topics are, either in one of the data collections or in all of them.

Since similar ranking heuristics do not work well for LDA to
provide local topics for Twitter and news, we only report the local
topics found by our method, shown in the lower part of Table 1.
On the left-hand side top ranked local topics on news are presented
while on the right hand side top local topics found on Twitter are
shown. Interesting observations can be made based upon these re-
sults. First, news articles tend to have more “formal” topics, such
as politics, education and economy, whereas a large fraction of the
Twitter stream consists of personal chat and opinions. Therefore,
besides the common topics (e.g., Table 1) in both news and Twit-
ter, local topics for Twitter seem less understandable and coherent.
Indeed, throughout several experiments conducted on May’s data
and on other months as well, we observe that most of the local top-
ics on Twitter are not very interesting. On the other hand, based
on our experiments, some local topics (e.g “Crime”) are on news
but seldom picked up on Twitter. Many different kinds of criminal
incidents are reported on a variety of news sources but not many of
them really trigger interest on Twitter. Note that we understand that
these results are preliminary and more thorough experiments are
required. Nevertheless, our method provides a tool to investigate
these interesting phenomena which are difficult or were impossible
to be examined before [33].

5.3 Case Study on A Common Topic

Besides finding common and local topics on news and Twitter,
our model also provides information about the temporal dynamics
of these topics. Here we take a topic related to “Kentucky Derby”
as an example to show the usefulness of our method. The Kentucky
Derby6 is the premier annual American horse race and has a signif-
icant international following. In 2010 it took place on May 1st. We
try to identify the topics related to this event from the results ob-
tained by our model. Remember that topics are only distributions
over words. In order to find potential topics, we check the ranking
positions of a list of terms which are known to be related to the
event (e.g., “horse”, “race”, “kentucky”, “derby”). If these terms
are ranked highly in a particular topic, we consider that topic to
be about the Kentucky Derby. We list the top 5 ranked terms of
the topic we found by this simple heuristic just described: “derby”,
“race”, “borel”, “kentucky” and “horse”. The topic we matched is a
common topic and therefore it has the same distribution over words
for both News and Twitter, meaning that once an article in News or
a message in Twitter refers to this topic, the same word distribution
is used to generate words, which is guaranteed by the model. How-
ever, the difference between News and Twitter on how this topic
would be selected in a document is controlled by a stream-specific

prior ∼ Dir(α
(c)
t ) and further governed by a stream-dependent tem-

poral gamma function.
In order to show the time series of the topic on news and Twitter,

we transform the counts into a valid distribution by calculating a

p(t|z) = p(z|t)p(t)∑
t′ p(z|t′)p(t′)

where t is a time epoch. Then, p(z|t)

is estimated by the number of tokens assigned to topic z in time
epoch t divided by the total number of tokens in time epoch t and
p(t) is estimated by the total number of tokens in time t divided by
the overall number of tokens across all time epochs. Basically, the
probability p(t|z) tells us how likely the topic would appear in time
epoch t. The results are shown in Figure 4. We first show the topic
on the whole timeline (720 hours in May) on the top and show the
first 120 hours at the bottom of the figure. The first observation is
that the topic has two major peaks on both news and Twitter, shown
in the upper part. This may reflect that “Kentucky Derby” is indeed
a popular sports event. From the first 120-hour view of the topic,
it is interesting to see that the topic first exhibited a peak on News
and exhibited another peak on Twitter several hours later. This is a
concrete example demonstrating the potential usage of our model
to analyze common topics on multiple text streams in the timeline.
A similar kind of analysis is conducted in [33] using sophisticated
heuristics to find common topics and to view the timelines of topics.

6http://en.wikipedia.org/wiki/Kentucky_Derby



Table 2: Hashtag-to-Topic Mappings
Hashtag Top Terms of Mapped Topic

[a] Hashtag Mapping for LDA model

#mothersday family home life children mother son friends

#memorialday event june call center community club park

#bp oil gulf spill coast mexico gas drilling

#kentuckyderby race car track kentucky win top cars

#gaga & #justinbieber justin lady super try bieber ider rio gaga jonas

[b] Hashtag Mapping for Temporal Collection model

#mothersday family children day home life church mother

#memorialday memorial event day june community center

#bp oil gulf spill coast drilling mexico water louisiana

#kentuckyderby derby race borel kentucky horse super

#gaga & #justinbieber bieber music video song gaga album lady

[c] KL Divergence between Hashtags and Matched Topics

Hashtag LDA vs. Temporal Collection

#mothersday 1.1911 / 0.7714

#memorialday 1.4331 / 0.9365

#bp 0.3958 / 0.1577

#kentuckyderby 1.9924 / 0.8183

#gaga & #justinbieber 2.2391 / 1.1754

5.4 Case Study on Hashtags
Hashtags, a type of community convention7 which starts with a

“#” sign, have been heavily used as annotations to represent events
and topics on Twitter. We select several hashtags that can act as
indicators for certain events where each hashtag is clearly associ-
ated to some events in May, 2010. More specifically, we choose
#mothersday for “Mothers Day”, #memorialday for “Memorial
Day”, #bp for “Oil Spill”,#kentuckyderby for “Kentucky Derby”,
#gaga for “Lady Gaga” and #justinbieber for “Justin Bieber”. We
wish to see whether these events can be discovered by different
models and how well these topics can be presented. We believe
these hashtags represent a large range of social events and there-
fore are representative. In order to make a fair comparison, we
transform the volume of these hashtags over time into distributions
by using a technique similar to those introduced above. The first
question we want to ask is whether the models can identify top-
ics that reflect the events behind these hashtags. We map hashtags
onto the topics obtained by the models and top ranked terms in
these topics are examined to see whether these terms have any rela-
tionships with the underlying events. To map the hashtags, we cal-

culate the following probability p(z|w) = p(w|z)p(z)∑
z′ p(w|z′)p(z′)

where

p(w|z) is exactly φz,w, provided by the trained models and p(z)
can be easily estimated by the counts. Intuitively, this probability
tells us how likely a topic is to be selected, given the term. For the
Temporal Collection model, all topics (including common
topics and local topics) are treated as candidates to be matched. We
map hashtags to topics for both LDA and our model, shown in the
upper part of Table 2. Both models map #gaga and #justinbieber
together onto a single topic, indicating that topics obtained by these
models do not strictly correspond to real world events. Although
some top ranked terms are similar for both models, the results from
the Temporal Collectionmodel are arguably better, in terms
of interpretation of these terms. For instance, the Temporal

Collectionmodel explicitly ranks terms “memorial” and “day”
highly in the list, implying this topic has much closer relationship
with “Memorial Day”, while LDA only has terms with broader
connections with this kind of event. Similarly, the Temporal

Collection model ranks more specific terms highly for ‘Ken-
tucky Derby” (e.g., “borel”, “horse”, “pletcher”) while the topic

7http://twitter.pbworks.com/Hashtags

Table 3: Evaluation on Retrieval Performance
Method MAP

TF-IDF 0.673

TF-IDF + Plain LDA 0.685

TF-IDF + Collection 0.703

TF-IDF + Temporal Collection 0.732

obtained by LDA is essentially related to many races including “car
races” and “horse races”.

We can also compare the time-series of topics and hashtags to
determine whether they are similar. The assumption is that, if they
behave similarly on the timeline, the topics might be good choices
for explaining the underlying events. Note that we are not seeking
the exact match here since the topics have many more terms rather
than a single hashtag and it may explain multiple events. Again,
we transform the volumes into probabilities. We plot the time se-
ries of selected hashtags and the time series of selected topics in
the same plots, shown in Figure 5. For each hashtag we compare
its time series, obtained using LDA, with those obtained from our
model. Although top ranked terms may look similar, the time series
of these topics behave significantly differently. For LDA, because
of the fixed Dirichlet hyper-parameter α over time, the models may
give inappropriate “pseudo counts” for certain topics in the time-
line. Indeed, one property of Dirichlet distribution can shed some
lights on the observation: E[θk] = αk∑

k′ αk′

where the expected

value of θk, the proportion of topic k represented in a document, is
the ratio of the Dirichlet parameter αk over the sum of all α values.
Since α values are fixed over time, this expected value will also be
constant over time, leading to the fact that the topic assignments
fluctuate around a certain value, though with variance, which is ex-
actly shown in our experiments. This drawback of LDA may lead
to difficulty in identifying the peaks of these topics. On the other
hand, in our model, since the hyper-parameters α are controlled
by the temporal gamma functions, the rise and fall of these values
may give good hints for the model to assign topics to words, yield-
ing better modeling temporal dynamics. Also, from the results, our
models can better match the peaks of hashtags, indicating that the
method can better reflect real events.

We can further compare these time series quantitatively. Since
these time series are valid distributions over time, KL di-
vergence is employed to measure their “distance” as follows:
∑

t p(t|w1) log
p(t|w1)
p(t|w2)

. KL divergence is non-negative and the

smaller the value is, the more similar two distributions are. We
calculate the KL divergence between hashtag time series and topic
time series for both LDA and our model. The results are shown in
the bottom part of Table 2. From the results it is obvious that the
time series of topics obtained by the Temporal Collection

model better match the corresponding hashtag time series, yielding
lower KL divergence scores. This also validates the visual evidence
from Figure 5.

5.5 Performance on Retrieval
As a further demonstration of the utility and effectiveness of our

model, we apply it in a toy application that uses it as part of an
information-retrieval relevance measure. For a query q and docu-
ment d, the idea is to use the probability p(q|d) that q was generated
by d’s generating model as a measure of the relevance of d to q. In
a scheme similar to that used in [29] we use a relevance measure
S(d|q) that is a linear combination of p(q|d) and a simple TF-IDF-
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Figure 5: The distributions p(t|z) of mapped topics in May. X-

axis is the hour number. Y-axis is the probability.

based cosine-similarity score τ (d, q). That is

S(d|q) = λ τ (d, q) + (1− λ) p(q|d). (14)

For our experiment we select the top 20 queries from
GoogleInsights in the time period of May 2010, correspond-
ing to our datasets. To select retrieval candidates we compute
τ (d, q) for all tweet-query pairs (d, q) and use these scores to rank
the tweets for all queries. We then select the top 50 tweets from that
ranking for each query. These tweets and queries are then submit-
ted to Amazon Mechanical Turk for manual relevance judgements,
which we use as ground truth. These judgements are assigned us-
ing a three-level scale consisting of “relevant”, “neutral” and “non-
relevant.” For each pair (d, q) three judges are assigned to assess
the relevance and only the pairs on which at least two workers agree
are kept, leaving a total of 922 tweets.

Mean Average Precision (MAP) for the top 20 positions is used
for retrieval-accuracy characterization. These top-20 MAP scores
are computed for each of four combinations of the TF-IDF measure
τ (d, q) and a topic model. For each combination the parameter λ of
(14) is varried over the range [0, 1] and the optimal (highest MAP)
value is determined. The corresponding MAP values are shown in
Table 3. From these results we see that the choice of topic model
used affects retrieval accuracy, with the highest retrieval accuracy
being associated with the combination of TF-IDF and Temporal
Collection scores.

6. CONCLUSION & FUTURE WORK
Modeling the temporal dynamics of topics is still a challenge,

especially on multiple data collections. In this paper we propose a
model for use in automatically analyzing multiple correlated text
streams with their temporal behavior in a principled way. Our
method bridges the recent advances in topic-modeling and infor-
mation cascading in social media. We extend topic models by al-
lowing each text stream to have local topics and shared topics, over-
coming several theoretical problems of previously proposed mod-
els for similar problems. For temporal modeling we associate each
topic with a time-dependent function that characterizes its popular-
ity over time. By combining the two models, we can effectively
model the temporal dynamics of multiple correlated text streams
in a unified framework. Compared to related work our method is
easy to implement and can potentially scale to large datasets. Ad-
ditionally our method provides a new tool for browsing and mining
a variety of types of social media simultaneously. For future work
it will be interesting to utilize Bayesian non-parametric techniques
to automatically learn the number of topics from the dataset. This
is especially valuable for our model where the number of common
topics and local topics must be manually assigned in current set-
tings. In addition in order to better reflect real events, topics can be
linked with named entities such that each topic is forced to contain
a certain number of entities. It is also interesting to see hierarchical
modeling of topics with temporal dynamics, which permits users
to “zoom in” and “zoom out” on large topics (e.g. “oil spill”) and
track their evolution over time.
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