
On Sampling Strategies for Neural Network-based
Collaborative Filtering

Ting Chen

University of California, Los Angeles

Los Angeles, CA 90095

tingchen@cs.ucla.edu

Yizhou Sun

University of California, Los Angeles

Los Angeles, CA 90095

yzsun@cs.ucla.edu

Yue Shi
∗

Yahoo! Research

Sunnyvale, CA 94089

yueshi@acm.org

Liangjie Hong

Etsy Inc.

Brooklyn, NY 11201

lhong@etsy.com

ABSTRACT
Recent advances in neural networks have inspired people to de-

sign hybrid recommendation algorithms that can incorporate both

(1) user-item interaction information and (2) content information

including image, audio, and text. Despite their promising results,

neural network-based recommendation algorithms pose extensive

computational costs, making it challenging to scale and improve

upon. In this paper, we propose a general neural network-based

recommendation framework, which subsumes several existing state-

of-the-art recommendation algorithms, and address the efficiency

issue by investigating sampling strategies in the stochastic gradient

descent training for the framework. We tackle this issue by first

establishing a connection between the loss functions and the user-

item interaction bipartite graph, where the loss function terms are

defined on links while major computation burdens are located at

nodes. We call this type of loss functions “graph-based” loss func-

tions, for which varied mini-batch sampling strategies can have

different computational costs. Based on the insight, three novel

sampling strategies are proposed, which can significantly improve

the training efficiency of the proposed framework (up to ×30 times

speedup in our experiments), as well as improving the recommen-

dation performance. Theoretical analysis is also provided for both

the computational cost and the convergence. We believe the study

of sampling strategies have further implications on general graph-

based loss functions, and would also enable more research under

the neural network-based recommendation framework.

ACM Reference format:
Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong. 2017. On Sampling

Strategies for Neural Network-based Collaborative Filtering. In Proceedings
of KDD ’17, Halifax, NS, Canada, August 13-17, 2017, 10 pages.
https://doi.org/10.1145/3097983.3098202

∗
Now at Facebook.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4887-4/17/08. . . $15.00

https://doi.org/10.1145/3097983.3098202

1 INTRODUCTION
Collaborative Filtering (CF) has been one of the most effective meth-

ods in recommender systems, and methods like matrix factorization

[17, 18, 27] are widely adopted. However, one of its limitation is the

dealing of “cold-start” problem, where there are few or no observed

interactions for new users or items, such as in news recommenda-

tion. To overcome this problem, hybrid methods are proposed to

incorporate side information [7, 25, 28], or item content informa-

tion [11, 31] into the recommendation algorithm. Although these

methods can deal with side information to some extent, they are not

effective for extracting features in complicated data, such as image,

audio and text. On the contrary, deep neural networks have been

shown very powerful at extracting complicated features from those

data automatically [15, 19]. Hence, it is natural to combine deep

learning with traditional collaborative filtering for recommendation

tasks, as seen in recent studies [1, 4, 32, 37].

In this work, we generalize several state-of-the-art neural network-

based recommendation algorithms [1, 4, 30], and propose a more

general framework that combines both collaborative filtering and

deep neural networks in a unified fashion. The framework inherits

the best of two worlds: (1) the power of collaborative filtering at

capturing user preference via their interaction with items, and (2)

that of deep neural networks at automatically extracting high-level

features from content data. However, it also comes with a price.

Traditional CF methods, such as sparse matrix factorization [17, 27],

are usually fast to train, while the deep neural networks in gen-

eral are much more computationally expensive [19]. Combining

these two models in a new recommendation framework can easily

increase computational cost by hundreds of times, thus require a

new design of the training algorithm to make it more efficient.

We tackle the computational challenges by first establishing a

connection between the loss functions and the user-item interaction

bipartite graph.We realize the key issuewhen combining the CF and

deep neural networks are in: the loss function terms are defined over

the links, and thus sampling is on links for the stochastic gradient

training, while the main computational burdens are located at nodes

(e.g., Convolutional Neural Network computation for image of an

item). For this type of loss functions, varied mini-batch sampling

strategies can lead to different computational costs, depending on

how many node computations are required in a mini-batch. The

existing stochastic sampling techniques, such as IID sampling, are

https://doi.org/10.1145/3097983.3098202
https://doi.org/10.1145/3097983.3098202

KDD ’17, August 13-17, 2017, Halifax, NS, Canada Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong

inefficient, as they do not take into account the node computations

that can be potentially shared across links/data points.

Inspired by the connection established, we propose three novel

sampling strategies for the general framework that can take coupled

computation costs across user-item interactions into consideration.

The first strategy is Stratified Sampling, which try to amortize costly

node computation by partitioning the links into different groups

based on nodes (called stratum), and sample links based on these

groups. The second strategy is Negative Sharing, which is based on

the observation that interaction/link computation is fast, so once

a mini-batch of user-item tuples are sampled, we share the nodes

for more links by creating additional negative links between nodes

in the same batch. Both strategies have their pros and cons, and

to keep their advantages while avoid their weakness, we form the

third strategy by combining the above two strategies. Theoretical

analysis of computational cost and convergence is also provided.

Our contributions can be summarized as follows.

• We propose a general hybrid recommendation framework

(Neural Network-based Collaborative Filtering) combining

CF and content-based methods with deep neural networks,

which generalize several state-of-the-art approaches.

• We establish a connection between the loss functions and

the user-item interaction graph, based on which, we propose

sampling strategies that can significantly improve training

efficiency (up to ×30 times faster in our experiments) as

well as the recommendation performance of the proposed

framework.

• We provide both theoretical analysis and empirical experi-

ments to demonstrate the superiority of the proposed meth-

ods.

2 A GENERAL FRAMEWORK FOR NEURAL
NETWORK-BASED COLLABORATIVE
FILTERING

In this section, we propose a general framework for neural network-

based Collaborative Filtering that incorporates both interaction and

content information.

2.1 Text Recommendation Problem
In this work, we use the text recommendation task [1, 4, 31, 32] as

an illustrative application for the proposed framework. However,

the proposed framework can be applied to more scenarios such as

music and video recommendations.

We use xu and xv to denote features of useru and itemv , respec-
tively. In text recommendation setting, we set xu to one-hot vector

indicating u’s user id (i.e. a binary vector with only one at the u-th
position)

1
, and xv as the text sequence, i.e. xv = (w1,w2, · · · ,wt).

A response matrix R̃ is used to denote the historical interactions be-

tween users and articles, where r̃uv indicates interaction between a

user u and an article v , such as “click-or-not” and “like-or-not”. Fur-

thermore, we consider R̃ as implicit feedback in this work, which

means only positive interactions are provided, and non-interactions

are treated as negative feedback implicitly.

1
Other user profile features can be included, if available.

%('))(')

*(+, -)

./ .0

Figure 1: The functional embedding framework.

Given user/item features {xu }, {xv } and their historical interac-

tion R̃, the goal is to learn a model which can rank new articles for

an existing user u based on this user’s interests and an article’s text

content.

2.2 Functional Embedding
In most of existing matrix factorization techniques [17, 18, 27],

each user/item ID is associated with a latent vector u or v (i.e.,

embedding), which can be considered as a simple linear trans-

formation from the one-hot vector represented by their IDs, i.e.

uu = f (xu) = WT xu (W is the embedding/weight matrix). Al-

though simple, this direct association of user/item ID with repre-

sentation make it less flexible and unable to incorporate features

such as text and image.

In order to effectively incorporate user and item features such

as content information, it has been proposed to replace embedding

vectors u or v with functions such as decision trees [38] and some

specific neural networks [1, 4]. Generalizing the existing work, we

propose to replace the original embedding vectors u and v with

general differentiable functions f (·) ∈ Rd and g(·) ∈ Rd that take

user/item features xu , xv as their inputs. Since the user/item embed-

dings are the output vectors of functions, we call this approach Func-
tional Embedding. After embeddings are computed, a score function

r (u,v) can be defined based on these embeddings for a user/item

pair (u,v), such as vector dot product r (u,v) = f (xu)T g(xv) (used
in this work), or a general neural network. The model framework

is shown in Figure 1. It is easy to see that our framework is very

general, as it does not explicitly specify the feature extraction func-

tions, as long as the functions are differentiable. In practice, these

function can be specified with neural networks such as CNN or

RNN, for extracting high-level information from image, audio, or

text sequence. When there are no features associated, it degenerates

to conventional matrix factorization where user/item IDs are used

as their features.

For simplicity, we will denote the output of f (xu) and g(xv) by
fu and gv , which are the embedding vectors for user u and item v .

2.3 Loss Functions for Implicit Feedback
In many real-world applications, users only provide positive signals

according to their preferences, while negative signals are usually

implicit. This is usually referred as “implicit feedback” [13, 23, 26].

On Sampling Strategies for Neural Network-based Collaborative Filtering KDD ’17, August 13-17, 2017, Halifax, NS, Canada

Table 1: Examples of loss functions for recommendation.

Pointwise loss

SG-loss [22]: -

∑
(u,v)∈D

(
logσ (fTu gv) + λEv ′∼Pn logσ (−fTu gv ′)

)
MSE-loss [30]:

∑
(u,v)∈D

(
(r̃+uv − fTu gv)2 + λEv ′∼Pn (r̃

−
uv ′ − f

T
u gv ′)2

)
Pairwise loss

Log-loss [26]: -

∑
(u,v)∈D Ev ′∼Pn logσ

(
γ (fTu gv − fTu gv ′)

)
Hinge-loss [33]:

∑
(u,v)∈D Ev ′∼Pn max

(
fTu gv ′ − fTu gv + γ , 0

)

In this work, we consider two types of loss functions that can handle

recommendation tasks with implicit feedback, namely, pointwise

loss functions and pairwise loss functions. Pointwise loss functions

have been applied to such problems in many existing work. In

[1, 30, 32], mean square loss (MSE) has been applied where “neg-

ative terms” are weighted less. And skip-gram (SG) loss has been

successfully utilized to learn robust word embedding [22].

These two loss functions are summarized in Table 1. Note that we

use a weighted expectation term over all negative samples, which

can be approximated with small number of samples. We can also

abstract the pointwise loss functions into the following form:

Lpointwise = Eu∼Pd (u)

[
Ev∼Pd (v |u)c

+
uvL

+ (u,v |θ)

+ Ev ′∼Pn (v ′)c
−
uv ′L

− (u,v ′ |θ)

] (1)

where Pd is (empirical) data distribution, Pn is user-defined negative

data distribution, c is user defined weights for the different user-

item pairs, θ denotes the set of all parameters, L+ (u,v |θ) denotes
the loss function on a single positive pair (u,v), and L− (u,v |θ)
denotes the loss on a single negative pair. Generally speaking, given

a useru, pointwise loss function encourages her score with positive

items {v}, and discourage her score with negative items {v ′}.
When it comes to ranking problem as commonly seen in implicit

feedback setting, some have argued that the pairwise loss would

be advantageous [26, 33], as pairwise loss encourages ranking of

positive items above negative items for the given user. Different

from pointwise counterparts, pairwise loss functions are defined on

a triplet of (u,v,v ′), where v is a positive item and v ′ is a negative
item to the user u. Table 1 also gives two instances of such loss

functions used in existing papers [26, 33] (with γ being the pre-

defined “margin” parameter). We can also abstract pairwise loss

functions by the following form:

Lpairwise = Eu∼Pd (u)Ev∼Pd (v |u)Ev ′∼Pn (v ′)cuvv ′L (u,v,v
′ |θ)

(2)

where the notations are similarly defined as in Eq. 1 andL (u,v,v ′ |θ)
denotes the loss function on the triplet (u,v,v ′).

2.4 Stochastic Gradient Descent Training and
Computational Challenges

To train the model, we use stochastic gradient descent based algo-

rithms [3, 16], which are widely used for training matrix factoriza-

tion and neural networks. The main flow of the training algorithm

Algorithm 1 Standard model training procedure

while not converged do
// mini-batch sampling

draw a mini-batch of user-item tuples (u,v)2

// forward pass

compute f (xu), g(xv) and their interaction fTu gv
compute the loss function L

// backward pass

compute gradients and apply SGD updates

end while

is summarized in Algorithm 1. By adopting the functional embed-

ding with (deep) neural networks, we can increase the power of the

model, but it also comes with a cost. Figure 2 shows the training

time (for CiteULike data) with different item functions g(·), namely

linear embedding taking item id as feature (equivalent to conven-

tional MF), CNN-based content embedding, and RNN/LSTM-based

content embedding. We see orders of magnitude increase of train-

ing time for the latter two embedding functions, which may create

barriers to adopt models under this framework.

Breaking down the computation cost of the framework, there

are three major parts of computational cost. The first part is the

user based computation (denoted by tf time units per user), which

includes forward computation of user function f (xu), and backward
computation of the function output w.r.t. its parameters. The second

part is the item based computation (denoted by tд time units per

item), which similarly includes forward computation of item func-

tion g(xv), as well as the back computation. The third part is the

computation for interaction function (denoted by ti time units per

interaction). The total computational cost for a mini-batch is then

tf × # of users + tд × # of items + ti × # of interactions, with some

other minor operations which we assume ignorable. In the text rec-

ommendation application, user IDs are used as user features (which

can be seen as linear layer on top of the one-hot inputs), (deep)

neural networks are used for text sequences, vector dot product is

used as interaction function, thus the dominant computational cost

is tд (orders of magnitude larger than tf and ti). In other words, we

assume tд ≫ tf , ti in this work.

Linear/MF CNN RNN
Item function

100

101

102

103

T
ra

in
in

g
tim

e
(s

ec
on

ds
)

Figure 2: Model training time per epoch with different types
of item functions (in log-scale).

2
Draw a mini-batch of user-item triplets (u, v, v ′) if a pairwise loss function is

adopted.

KDD ’17, August 13-17, 2017, Halifax, NS, Canada Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong

%(')
)(')ℒ2(+", -")

ℒ3(+", -4)

ℒ2(+#, -4)

ℒ3(+#, -#)

%(')
)(')

)(')

Figure 3: The bipartite interaction graph for pointwise loss
functions, where loss functions are defined over links. The
pairwise loss functions are defined over pairs of links.

3 MINI-BATCH SAMPLING STRATEGIES FOR
EFFICIENT MODEL TRAINING

In this section, we propose and discuss different sampling strategies

that can improve the efficiency of the model training.

3.1 Computational Cost in a Graph View
Before the discussion of different sampling strategies, we motivate

our readers by first making a connection between the loss func-

tions and the bipartite graph of user-item interactions. In the loss

functions laid out before, we observed that each loss function term

in Eq. 1, namely, L (u,v), involves a pair of user and item, which

corresponds to a link in their interaction graph. And two types of

links corresponding to two types of loss terms in the loss functions,

i.e., positive links/terms and negative links/terms. Similar analysis

holds for pairwise loss in Eq. 2, though there are slight differences

as each single loss function corresponds to a pair of links with

opposite signs on the graph. We can also establish a correspon-

dence between user/item functions and nodes in the graph, i.e.,

f (u) to user node u and g(v) to item node v . The connection is

illustrated in Figure 3. Since the loss functions are defined over the

links, we name them “graph-based” loss functions to emphasize the

connection.

The key observation for graph-based loss functions is that: the

loss functions are defined over links, but the major computational

burden are located at nodes (due to the use of costly g(·) function).
Since each node is associated with multiple links, which are corre-

sponding to multiple loss function terms, the computational costs

of loss functions over links are coupled (as they may share the same

nodes) when using mini-batch based SGD. Hence, varied sampling

strategies yield different computational costs. For example, when

we put links connected to the same node together in a mini-batch,

the computational cost can be lowered as there are fewer g(·) to
compute

3
. This is in great contrast to conventional optimization

problems, where each loss function term dose not couple with

others in terms of computation cost.

3
This holds for both forward and backward computation. For the latter, the gradient

from different links can be aggregated before back-propagating to g(·).

3.2 Existing Mini-Batch Sampling Strategies
In standard SGD sampler, (positive) data samples are drawn uni-

formly at random for gradient computation. Due to the appearance

of negative samples, we draw negative samples from some prede-

fined probability distribution, i.e. (u ′,v ′) ∼ Pn (u
′,v ′). We call this

approach “IID Sampling”, since each positive link is dependently

and identical distributed, and the same holds for negative links

(with a different distribution).

Many existing algorithms with graph-based loss functions [1,

22, 29] adopt the “Negative Sampling” strategy, in which k negative

samples are drawn whenever a positive example is drawn. The neg-

ative samples are sampled based on the positive ones by replacing

the items in the positive samples. This is illustrated in Algorithm 2

and Figure 4(a).

Algorithm 2 Negative Sampling [1, 21, 29]

Require: number of positive links in a mini-batch b, number of

negative links per positive one: k
draw b positive links uniformly at random

for each of b positive links do
draw k negative links by replacing true item v with v ′ ∝
Pn (v

′)
end for

The IID Sampling strategy dose not take into account the prop-

erty of graph-based loss functions, since samples are completely

independent of each other. Hence, the computational cost in a single

mini-batch cannot be amortized across different samples, leading

to very extensive computations with (deep) neural networks. The

Negative Sampling does not really help, since the item function

computation cost tд is the dominant one. To be more specific, con-

sider a mini-batch with b (1 + k) links sampled by IID Sampling

or Negative Sampling, we have to conduct item based g(·) compu-

tation b (1 + k) times, since items in a mini-batch are likely to be

non-overlapping with sufficient large item sets.

3.3 The Proposed Sampling Strategies
3.3.1 Stratified Sampling (by Items). Motivated by the connec-

tion between the loss functions and the bipartite interaction graph

as shown in Figure 3, we propose to sample links that share nodes,

in particular those with high computational cost (i.e. tд for item

function g(·) in our case). By doing so, the computational cost

within a mini-batch can be amortized, since fewer costly functions

are computed (in both forward and backward propagations).

In order to achieve this, we (conceptually) partition the links,

which correspond to loss function terms, into strata. A stratum in

the strata is a set of links on the bipartite graph sharing the same

source or destination node. Instead of drawing links directly for

training, we will first draw stratum and then draw both positive

and negative links. Since we want each stratum to share the same

item, we can directly draw an item and then sample its links. The

details are given in Algorithm 3 and illustrated in Figure 4(b).

Compared to Negative Sampling in Algorithm 2, there are several

differences: (1) Stratified Sampling can be based on either item or

user, but in the negative sampling only negative items are drawn;

and (2) each node in stratified sampling can be associated with

On Sampling Strategies for Neural Network-based Collaborative Filtering KDD ’17, August 13-17, 2017, Halifax, NS, Canada

(a) Negative (b) Stratified (by Items) (c) Negative Sharing (d) Stratified with N.S.

Figure 4: Illustration of four different sampling strategies. 4(b)-4(d) are the proposed sampling strategies. Red lines denote
positive links/interactions, and black lines denote negative links/interactions.

Algorithm 3 Stratified Sampling (by Items)

Require: number of positive links in a mini-batch: b, number

of positive links per stratum: s , number of negative links per

positive one: k
repeat

draw an item v ∝ Pd (v)
draw s positive users {u} of v uniformly at random

draw k × s negative users {u ′} ∝ Pd (u
′)

until a mini-batch of b positive links are sampled

more than 1 positive link (i.e., s > 1, which can help improve the

speedup as shown below), while in negative sampling each node is

only associated with one positive link.

Now we consider its speedup for a mini-batch including b posi-

tive links/interactions andbk negative ones, which containsb (1+k)
users andb/s items. The Stratified Sampling (by Items) only requires

b/s computations of g(·) functions, while the Negative Sampling

requires b (1 + k) computations. Assuming tд ≫ tf , ti , i.e. the com-

putation cost is dominated by the item function д(·), the Stratified
Sampling (by Items) can provide s (1 + k) times speedup in a mini-

batch. With s = 4,k = 10 as used in some of our experiments, it

yields to ×40 speedup optimally. However, it is worth pointing out

that item-based Stratified Sampling cannot be applied to pairwise

loss functions, which compare preferences over items based on a

given user.

3.3.2 Negative Sharing. The idea of Negative Sharing is inspired
from a different aspect of the connection between the loss func-

tions and the bipartite interaction graph. Since ti ≪ tд , i.e. the
computational cost of interaction function (dot product) is ignor-

able compared to that of item function, when a mini-batch of users

and items are sampled, increasing the number of interactions among

them may not result in a significant increase of computational cost.

This can be achieved by creating a complete bipartite graph for a

mini-batch by adding negative links between all non-interaction

pairs between users and items. Using this strategy, we can draw

NO negative links at all!

More specifically, consider the IID Sampling, when b positive

links are sampled, there will be b users and b items involved (assum-

ing the sizes of user set and item set are much larger than b). Note
that, there areb (b−1) non-interactions in the mini-batch, which are

not considered in IID Sampling or Negative Sampling, instead they

Algorithm 4 Negative Sharing

Require: number of positive links in a mini-batch: b
draw b positive user-item pairs {(u,v)} uniformly at random

construct negative pairs by connecting non-linked users and

items in the batch

draw additional negative samples. Since the main computational

cost of training is on the node computation and the node set is

fixed given the batch of b positive links, we can share the nodes for

negative links without increasing much of computational burdens.

Based on this idea, Algorithm 4 summarizes an extremely simple

sampling procedure, and it is illustrated in Figure 4(c).

Since Negative Sharing avoids sampling k negative links, it only

contains b items while in Negative Sampling contains b (1 + k)
items. So it can provide (1+k) times speedup compared to Negative

Sampling (assuming tд ≫ tf , ti , and total interaction cost is still

insignificant). Given the batch size b is usually larger than k (e.g.,

b = 512,k = 20 in our experiments), much more negative links

(e.g. 512 × 511) will also be considered, this is helpful for both

faster convergence and better performance, which is shown in our

experiments. However, as the number of negative samples increases,

the performance and the convergence will not be improved linearly.

diminishing return is expected.

3.3.3 Stratified Sampling with Negative Sharing. The two strate-

gies above can both reduce the computational cost by smarter

sampling of the mini-batch. However, they both have weakness:

Stratified Sampling cannot deal with pairwise loss and it is still

dependent on the number of negative examples k , and Negative

Sharing introduces a lot of negative samples which may be unnec-

essary due to diminishing return.

The good news is, the two sampling strategies are proposed from

different perspectives, and combining them together can preserve

their advantages while avoid their weakness. This leads to the

Stratified Sampling with Negative Sharing, which can be applied to

both pointwise and pairwise loss functions, and it can have flexible

ratio between positive and negative samples (i.e. more positive links

given the same negative links compared to Negative Sharing). To

do so, basically we sample positive links according to Stratified

Sampling, and then sample/create negative links by treating non-

interactions as negative links. The details are given in Algorithm 5

and illustrated in Figure 4(d).

KDD ’17, August 13-17, 2017, Halifax, NS, Canada Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong

Algorithm 5 Stratified Sampling with Negative Sharing

Require: number of positive links in a mini-batch: b, number of

positive links per stratum: s
repeat

draw an item v ∝ Pd (v)
draw s positive users of item v uniformly at random

until a mini-batch of b/s items are sampled

construct negative pairs by connecting non-linked users and

items in the batch

Computationally, Stratified Sampling with Negative Sharing only

involve b/s item nodes in a mini-batch, so it can provide the same

s (1 + k) times speedup over Negative Sampling as Stratified Sam-

pling (by Items) does, but it will utilize much more negative links

compared to Negative Sampling. For example, in our experiments

with b = 512, s = 4, we have 127 negative links per positive one,

much larger than k = 10 in Negative Sampling, and only requires

1/4 times of g(·) computations compared to Negative Sharing.

3.3.4 Implementation Details. When the negative/noise distri-

bution Pn is not unigram
4
, we need to adjust the loss function in

order to make sure the stochastic gradient is unbiased. For point-

wise loss, each of the negative term is adjusted by multiplying a

weight of
Pn (v ′)
Pd (v ′)

; for pairwise loss, each term based on a triplet of

(u,v,v ′) is adjusted by multiplying a weight of
Pn (v ′)
Pd (v ′)

where v ′ is

the sampled negative item.

Instead of sampling, we prefer to use shuffling as much as we

can, which produces unbiased samples while yielding zero variance.

This can be a useful trick for achieving better performance when the

number of drawn samples are not large enough for each loss terms.

For IID and Negative Sampling, this can be easily done for positive

links by simply shuffling them. As for the Stratified Sampling (w./wo.

Negative Sharing), instead of shuffling the positive links directly, we

shuffle the randomly formed strata (where each stratum contains

roughly a single item)
5
. All other necessary sampling operations

required are sampling from discrete distributions, which can be

done in O (1) with Alias method.

In Negative Sharing (w./wo. Stratified Sampling), We can com-

pute the user-item interactions with more efficient operator, i.e.

replacing the vector dot product between each pair of (f , g) with
matrix multiplication between (F,G), where F = [fu1 , · · · , fun],
G = [gv1

, · · · , gvm]. Since matrix multiplication is higher in BLAS

level than vector multiplication [14], even we increase the number

of interactions, with medium matrix size (e.g. 1000× 1000) it does

not affect the computational cost much in practice.

3.4 Computational Cost and Convergence
Analysis

Here we provide a summary for the computational cost for different

sampling strategies discussed above, and also analyze their conver-

gences. Two aspects that can lead to speedup are analyzed: (1) the

4
Unigram means proportional to item frequency, such as node degree in user-item

interaction graph.

5
This can be done by first shuffling users associated with each item, and then concate-

nating all links according to items in random order, random strata is then formed by

segmenting the list.

computational cost for a mini-batch, i.e. per iteration, and (2) the

number of iterations required to reach some referenced loss.

3.4.1 Computational Cost. To fairly compare different sampling

strategies, we fix the same number of positive links in each of

the mini-batch, which correspond to the positive terms in the loss

function. Table 2 shows the computational cost of different sampling

strategies for a given mini-batch. Since tд ≫ tf , ti in practice, we

approximate the theoretical speedup per iteration by comparing the

number of tд computation. We can see that the proposed sampling

strategies can provide (1 + k), by Negative Sharing, or s (1 + k), by
Stratified Sampling (w./w.o. Negative Sharing), times speedup for

each iteration compared to IID Sampling or Negative Sampling. As

for the number of iterations to reach a reference loss, it is related

to number of negative samples utilized, which is analyzed below.

3.4.2 Convergence Analysis. We want to make sure the SGD

training under the proposed sampling strategies can converge cor-

rectly. The necessary condition for this to hold is the stochastic

gradient estimator has to be unbiased, which leads us to the follow-

ing lemma.

Lemma 1. (unbiased stochastic gradient) Under sampling Algo-
rithm 2, 3, 4, and 5, we have EB [∇LB (θ t)] = ∇L (θ t). In other
words, the stochastic mini-batch gradient equals to true gradient in
expectation.

This holds for both pointwise loss and pairwise loss. It is guar-

anteed since we draw samples stochastically and re-weight certain

samples accordingly. The detailed proof can be found in the supple-

mentary material.

Given this lemma, we can further analyze the convergence be-

havior of the proposed sampling behaviors. Due to the highly non-

linear and non-convex functions composed by (deep) neural net-

works, the convergence rate is usually difficult to analyze. So we

show the SGD with the proposed sampling strategies follow a local

convergence bound (similar to [10, 24]).

Proposition 1. (local convergence) Suppose L has σ -bounded

gradient; let ηt = η = c/
√
T where c =

√
2(L (θ 0)−L (θ ∗)

Lσ 2
, and θ∗

is the minimizer to L. Then, the following holds for the proposed
sampling strategies given in Algorithm 2, 3, 4, 5

min

0≤t ≤T−1
E[∥∇L (θ t)∥2] ≤

√
2(L (θ0) − L (θ∗))

T
σ

The detailed proof is also given in the supplementary material.

Furthermore, utilizing more negative links in each mini-batch

can lower the expected stochastic gradient variance. As shown in

[35, 36], the reduction of variance can lead to faster convergence.

This suggests that Negative Sharing (w./wo. Stratified Sampling)

has better convergence than the Stratified Sampling (by Items).

4 EXPERIMENTS
4.1 Data Sets
Two real-world text recommendation data sets are used for the

experiments. The first data set CiteULike, collected from CiteU-

Like.org, is provided in [31]. The CiteULike data set contains users

bookmarking papers, where each paper is associated with a title

On Sampling Strategies for Neural Network-based Collaborative Filtering KDD ’17, August 13-17, 2017, Halifax, NS, Canada

Table 2: Computational cost analysis for a batch of b positive links. We use vec to denote vector multiplication, and mat
to denote matrix multiplication. Since tд ≫ tf , ti in practice, the theoretical speedup per iteration can be approximated by
comparing the number of tд computation, which is colored red below. The number of iterations to reach a referenced loss is
related to the number of negative links in each mini-batch.

Sampling # pos. links # neg. links # tf # tд # ti pointwise pairwise

IID [3] b bk b (1 + k) b (1 + k) b (1 + k) vec ✓ ×

Negative [1, 21, 29] b bk b b (1 + k) b (1 + k) vec ✓ ✓

Stratified (by Items) b bk b (1 + k) b
s b (1 + k) vec ✓ ×

Negative Sharing b b (b − 1) b b b × b mat ✓ ✓

Stratified with N.S. b
b (b−1)

s b b
s b × b

s mat ✓ ✓

and an abstract. The second data set is a random subset of Yahoo!

News data set
6
, which contains users clicking on news presented at

Yahoo!. There are 5,551 users and 16,980 items, and total of 204,986

positive interactions in CiteULike data. As for Yahoo! News data,

there are 10,000 users, 58,579 items and 515,503 interactions.

Following [4], we select a portion (20%) of items to form the pool

of test items. All user interactions with those test items are held-out

during training, only the remaining user-item interactions are used

as training data, which simulates the scenarios for recommending

newly-emerged text articles.

4.2 Experimental Settings
The main purpose of experiments is to compare the efficiency and

effectiveness of our proposed sampling strategies against existing

ones. So we mainly compare Stratified Sampling, Negative Sharing,

and Stratified Samplingwith Negative Sharing, against IID sampling

and Negative Sampling. It is worth noting that several existing state-

of-the-art models [1, 4, 30] are special cases of our framework (e.g.

using MSE-loss/Log-loss with CNN or RNN), so they are compared

to other loss functions under our framework.

Evaluation Metrics. For recommendation performance, we follow

[1, 32] and use recall@M. As pointed out in [32], the precision is

not a suitable performance measure since non interactions may be

due to (1) the user is not interested in the item, or (2) the user does

not pay attention to its existence. More specifically, for each user,

we rank candidate test items based on the predicted scores, and

then compute recall@M based on the list. Finally the recall@M is

averaged over all users.

As for the computational cost, we mainly measure it in three

dimensions: the training time for each iteration (or epoch equiv-

alently, since batch size is fixed for all methods), the number of

iterations needed to reach a referenced loss, and the total amount

of computation time needed to reach the same loss. In our exper-

iments, we use the smallest loss obtained by IID sampling in the

maximum 30 epochs as referenced loss. Noted that all time measure

mentioned here is in Wall Time.

Parameter Settings. The key parameters are tunedwith validation

set, while others are simply set to reasonable values.We adopt Adam

[16] as the stochastic optimizer. We use the same batch size b = 512

for all sampling strategies, we use the number of positive link per

sampled stratum s = 4, learning rate is set to 0.001 for MSE-loss, and

6
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=75

Table 3: Comparisons of speedup for different sampling
strategies against IID Sampling: per iteration, # of iteration,
and total speedup.

CiteULike News

Model Sampling Per it. # of it. Total Per it. # of it. Total

CNN

Negative 1.02 1.00 1.02 1.03 1.03 1.06

Stratified 8.83 0.97 8.56 6.40 0.97 6.20

N.S. 8.42 2.31 19.50 6.54 2.21 14.45

Strat. w. N.S. 15.53 1.87 29.12 11.49 2.17 24.98

LSTM

Negative 0.99 0.96 0.95 1.0 1.25 1.25

Stratified 3.1 0.77 2.38 3.12 1.03 3.22

N.S. 2.87 2.45 7.03 2.78 4.14 11.5

Strat. w. N.S. 3.4 2.22 7.57 3.13 3.32 10.41

0.01 for others. γ is set to 0.1 for Hinge-loss, and 10 for others. λ is

set to 8 for MSE-loss, and 128 for others. We set number of negative

examples k = 10 for convolutional neural networks, and k = 5 for

RNN/LSTM due to the GPU memory limit. All experiments are run

with Titan X GPUs. We use unigram noise/negative distribution.

For CNN, we adopt the structure similar in [15], and use 50 filters

with filter size of 3. Regularization is added using both weight

decay on user embedding and dropout on item embedding. For

RNN, we use LSTM [12] with 50 hidden units. For both models, the

dimensions of user and word embedding are set to 50. Early stop is

utilized, and the experiments are run to maximum 30 epochs.

4.3 Speedup Under Different Sampling
Strategies

Table 3 breaks down the speedup into (1) speedup for training on a

given mini-batch, (2) number of iterations (to reach referenced cost)

speedup, and (3) the total speedup, which is product of the first

two. Different strategies are compared against IID Sampling. It is

shown that Negative Sampling has similar computational cost as IID

Sampling, which fits our projection. All three proposed sampling

strategies can significantly reduce the computation cost within a

mini-batch. Moreover, the Negative Sharing and Stratified Sampling

with Negative Sharing can further improve the convergence w.r.t.

KDD ’17, August 13-17, 2017, Halifax, NS, Canada Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong

0 5 10 15 20 25 30
Epoch

2

4

6

8

10

12

Lo
ss

IID
Negative
Stratified
Negative Sharing
Stratified with N.S.

(a) Citeulike (epoch)

0.0 0.5 1.0 1.5 2.0 2.5
Time (seconds) 1e3

2

4

6

8

10

12

Lo
ss

IID
Negative
Stratified
Negative Sharing
Stratified with N.S.

(b) Citeulike (wall time)

0 5 10 15 20 25 30
Epoch

3

4

5

6

7

8

9

Lo
ss

IID
Negative
Stratified
Negative Sharing
Stratified with N.S.

(c) News (epoch)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Time (seconds) 1e3

3

4

5

6

7

8

9

Lo
ss

IID
Negative
Stratified
Negative Sharing
Stratified with N.S.

(d) News (wall time)

Figure 5: Training loss curves (all methods have the same number of b positive samples in a mini-batch)

0 5 10 15 20 25 30
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

R
ec

al
l@

50

IID
Negative
Stratified
Negative Sharing
Stratified with N.S.

(a) Citeulike (epoch)

0.0 0.5 1.0 1.5 2.0 2.5
Time (seconds) 1e3

0.0

0.1

0.2

0.3

0.4

0.5

R
ec

al
l@

50

IID
Negative
Stratified
Negative Sharing
Stratified with N.S.

(b) Citeulike (wall time)

0 5 10 15 20 25 30
Epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
ec

al
l@

50

IID
Negative
Stratified
Negative Sharing
Stratified with N.S.

(c) News (epoch)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Time (seconds) 1e3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
ec

al
l@

50

IID
Negative
Stratified
Negative Sharing
Stratified with N.S.

(d) News (wall time)

Figure 6: Test performance/recall curves (all methods have the same number of b positive samples in a mini-batch).

the number of iterations, which demonstrates the benefit of using

larger number of negative examples.

Figure 5 and 6 shows the convergence curves of both loss and

test performance for different sampling strategies (with CNN + SG-

loss). In both figures, we measure progress every epoch, which is

equivalent to a fixed number of iterations since all methods have

the same batch size b. In both figures, we can observe mainly two

types of convergences behavior. Firstly, in terms of number of it-

erations, Negative Sharing (w./wo. Stratified Sampling) converge

fastest, which attributes to the number of negative samples used.

Secondly, in terms of wall time, Negative Sharing (w./wo. Stratified

Sampling) and Stratified Sampling (by Items) are all significantly

faster than baseline sampling strategies, i.e. IID Sampling and Neag-

tive Sampling. It is also interesting to see that that overfitting occurs

earlier as convergence speeds up, which does no harm as early stop-

ping can be used.

For Stratified Sampling (w./wo. negative sharing), the number of

positive links per stratum s can also play a role to improve speedup

as we analyzed before. As shown in Figure 7, the convergence time

as well as recommendation performance can both be improved with

a reasonable s , such as 4 or 8 in our case.

4.4 Recommendation Performance Under
Different Sampling Strategies

It is shown in above experiments that the proposed sampling strate-

gies are significantly faster than the baselines. But we would also

like to further access the recommendation performance by adopting

the proposed strategies.

Table 4 compares the proposed sampling strategieswith CNN/RNN

models and four loss functions (both pointwise and pairwise). We

0 50 100 150 200 250 300 350
Time (seconds)

2

4

6

8

10

12

Lo
ss

s
1
2
4
8

(a) Loss (Stratified)

0 50 100 150 200 250 300 350
Time (seconds)

2

4

6

8

10

12

Lo
ss

s
1
2
4
8

(b) Loss (Stratified with N.S.)

0 50 100 150 200 250 300 350
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

R
ec

al
l@

50

s
1
2
4
8

(c) Recall (Stratified)

0 50 100 150 200 250 300 350
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

R
ec

al
l@

50

s
1
2
4
8

(d) Recall (Stratified with N.S.)

Figure 7: The number of positive links per stratum s VS loss
and performance.

can see that IID Sampling, Negative Sampling and Stratified Sam-

pling (by Items) have similar recommendation performances, which

is expected since they all utilize same amount of negative links. For

Negative Sharing and Stratified Sampling with Negative Sharing,

since there are much more negative samples utilized, their perfor-

mances are significantly better. We also observe that the current

recommendation models based onMSE-loss [1, 30] can be improved

by others such as SG-loss and pairwise loss functions [4].

To further investigate the superior performance brought by Neg-

ative Sharing. We study the number of negative examples k and

On Sampling Strategies for Neural Network-based Collaborative Filtering KDD ’17, August 13-17, 2017, Halifax, NS, Canada

Table 4: Recall@50 for different sampling strategies under different models and losses.

CiteULike News

Model Sampling SG-loss MSE-loss Hinge-loss Log-loss SG-loss MSE-loss Hinge-loss Log-loss

CNN

IID 0.4746 0.4437 - - 0.1091 0.0929 - -

Negative 0.4725 0.4408 0.4729 0.4796 0.1083 0.0956 0.1013 0.1009

Stratified 0.4761 0.4394 - - 0.1090 0.0913 - -

Negative Sharing 0.4866 0.4423 0.4794 0.4769 0.1131 0.0968 0.0909 0.0932

Stratified with N.S. 0.4890 0.4535 0.4790 0.4884 0.1196 0.1043 0.1059 0.1100

LSTM

IID 0.4479 0.4718 - - 0.0971 0.0998 - -

Negative 0.4371 0.4668 0.4321 0.4540 0.0977 0.0977 0.0718 0.0711

Stratified 0.4344 0.4685 - - 0.0966 0.0996 - -

Negative Sharing 0.4629 0.4839 0.4605 0.4674 0.1121 0.0982 0.0806 0.0862

Stratified with N.S. 0.4742 0.4877 0.4703 0.4730 0.1051 0.1098 0.1017 0.1002

1 5 10 15 20
Number of negative examples k

0.360

0.380

0.400

0.420

0.440

0.460

0.480

0.500

R
ec

al
l@

50

Negative distribution
uniform
unigram

(a) CiteULike

1 5 10 15 20
Number of negative examples k

0.075

0.080

0.085

0.090

0.095

0.100

0.105

0.110

R
ec

al
l@

50

Negative distribution
uniform
unigram

(b) News

Figure 8: The number of negatives VS performances.

the convergence performance. Figure 8 shows the test performance

against various k . As shown in the figure, we observe a clear di-

minishing return in the improvement of performance. However,

the performance seems still increasing even we use 20 negative

examples, which explains why our proposed method with negative

sharing can result in better performance.

5 RELATEDWORK
Collaborative filtering [18] has been one of the most effective meth-

ods in recommender systems, and methods like matrix factorization

[17, 27] are widely adopted. While many papers focus on the ex-

plicit feedback setting such as rating prediction, implicit feedback

is found in many real-world scenarios and studied by many pa-

pers as well [13, 23, 26]. Although collaborative filtering techniques

are powerful, they suffer from the so-called “cold-start” problem

since side/content information is not well leveraged. To address

the issue and improve performance, hybrid methods are proposed

to incorporate side information [5, 7, 25, 28, 38], as well as content

information [4, 11, 31, 32].

Deep Neural Networks (DNNs) have been showing extraordinary

abilities to extract high-level features from raw data, such as video,

audio, and text [8, 15, 34]. Compared to traditional feature detectors,

such as SIFT and n-grams, DNNs and other embedding methods

[5, 6, 29] can automatically extract better features that produce

higher performance in various tasks. To leverage the extraordinary

feature extraction or content understanding abilities of DNNs for

recommender systems, recent efforts are made in combining col-

laborative filtering and neural networks [1, 4, 30, 32]. [32] adopts

autoencoder for extracting item-side text information for article

recommendation, [1] adopts RNN/GRU to better understand the

text content. [4] proposes to use CNN and pairwise loss functions,

and also incorporate unsupervised text embedding. The general

functional embedding framework in this work subsumes existing

models [1, 4, 30].

Stochastic Gradient Descent [3] and its variants [16] have been

widely adopted in training machine learning models, including

neural networks. Samples are drawn uniformly at random (IID)

so that the stochastic gradient vector equals to the true gradient

in expectation. In the setting where negative examples are over-

whelming, such as in word embedding (e.g., Word2Vec [22]) and

network embedding (e.g., LINE [29]) tasks, negative sampling is

utilized. Recent efforts have been made to improve SGD conver-

gence by (1) reducing the variance of stochastic gradient estimator,

or (2) distributing the training over multiple workers. Several sam-

pling techniques, such as stratified sampling [35] and importance

sampling [36] are proposed to achieve the variance reduction. Dif-

ferent from their work, we improve sampling strategies in SGD by

reducing the computational cost of a mini-batch while preserving,

or even increasing, the number of data points in the mini-batch.

Sampling techniques are also studied in [9, 39] to distribute the

computation of matrix factorization, their objectives in sampling

strategy design are reducing the parameter overlapping and cache

miss. We also find that the idea of sharing negative examples is

exploited to speed up word embedding training in [14].

6 DISCUSSIONS
While it is discussed under content-based collaborative filtering

problem in this work, the study of sampling strategies for “graph-

based” loss functions have further implications. The IID sampling

strategy is simple and popular for SGD-based training, since the

KDD ’17, August 13-17, 2017, Halifax, NS, Canada Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong

loss function terms usually do not share the common computations.

So no matter how a mini-batch is formed, it almost bears the same

amount of computation. This assumption is shattered by models

that are defined under graph structure, with applications in social

and knowledge graph mining [2], image caption ranking [20], and

so on. For those scenarios, we believe better sampling strategies

can result in much faster training than that with IID sampling.

We would also like to point out limitations of our work. The first

one is the setting of implicit feedback. When the problem is posed

under explicit feedback, Negative Sharing can be less effective since

the constructed negative samples may not overlap with the explicit

negative ones. The second one is the assumption of efficient com-

putation for interaction functions. When we use neural networks

as interaction functions, we may need to consider constructing

negative samples more wisely for Negative Sharing as it will also

come with a noticeable cost.

7 CONCLUSIONS AND FUTUREWORK
In this work, we propose a hybrid recommendation framework,

combining conventional collaborative filtering with (deep) neural

networks. The framework generalizes several existing state-of-the-

art recommendation models, and embody potentially more pow-

erful ones. To overcome the high computational cost brought by

combining “cheap” CF with “expensive” NN, we first establish the

connection between the loss functions and the user-item interac-

tion bipartite graph, and then point out the computational costs

can vary with different sampling strategies. Based on this insight,

we propose three novel sampling strategies that can significantly

improve the training efficiency of the proposed framework, as well

as the recommendation performance.

In the future, there are some promising directions. Firstly, based

on the efficient sampling techniques of this paper, we can more

efficiently study different neural networks and auxiliary informa-

tion for building hybrid recommendation models. Secondly, we can

also study the effects of negative sampling distributions and its

affect on the design of more efficient sampling strategies. Lastly

but not least, it would also be interesting to apply our sampling

strategies in a distributed training environments where multi-GPUs

and multi-machines are considered.

ACKNOWLEDGEMENTS
The authors would like to thank anonymous reviewers for helpful

suggestions. The authors would also like to thank NVIDIA for the

donation of one Titan X GPU. This work is partially supported by

NSF CAREER #1741634.

REFERENCES
[1] Trapit Bansal, David Belanger, and Andrew McCallum. 2016. Ask the GRU:

Multi-task Learning for Deep Text Recommendations. In RecSys’16. 107–114.
[2] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational

data. In NIPS’13. 2787–2795.
[3] Léon Bottou. 2010. Large-scale machine learning with stochastic gradient descent.

In COMPSTAT’2010. Springer, 177–186.
[4] Ting Chen, Liangjie Hong, Yue Shi, and Yizhou Sun. 2017. Joint Text Em-

bedding for Personalized Content-based Recommendation. In arXiv preprint
arXiv:1706.01084.

[5] Ting Chen and Yizhou Sun. 2017. Task-Guided and Path-Augmented Heteroge-

neous Network Embedding for Author Identification. In WSDM’17. 295–304.

[6] Ting Chen, Lu-An Tang, Yizhou Sun, Zhengzhang Chen, and Kai Zhang. 2016.

Entity Embedding-based Anomaly Detection for Heterogeneous Categorical

Events. In IJCAI’16. Miami.

[7] Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong

Yu. 2012. SVDFeature: a toolkit for feature-based collaborative filtering. Journal
of Machine Learning Research 13, Dec (2012), 3619–3622.

[8] Ronan Collobert, JasonWeston, Léon Bottou,Michael Karlen, Koray Kavukcuoglu,

and Pavel Kuksa. 2011. Natural language processing (almost) from scratch.

Journal of Machine Learning Research 12, Aug (2011), 2493–2537.

[9] Rainer Gemulla, Erik Nijkamp, Peter J Haas, and Yannis Sismanis. 2011. Large-

scale matrix factorization with distributed stochastic gradient descent. In KDD’11.
69–77.

[10] Saeed Ghadimi and Guanghui Lan. 2013. Stochastic first-and zeroth-order meth-

ods for nonconvex stochastic programming. SIAM Journal on Optimization 23, 4

(2013), 2341–2368.

[11] Prem K Gopalan, Laurent Charlin, and David Blei. 2014. Content-based recom-

mendations with poisson factorization. In NIPS’14. 3176–3184.
[12] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural

computation 9, 8 (1997), 1735–1780.

[13] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for

implicit feedback datasets. In ICDM’08. 263–272.
[14] Shihao Ji, Nadathur Satish, Sheng Li, and Pradeep Dubey. 2016. Parallelizing

word2vec in shared and distributed memory. arXiv preprint arXiv:1604.04661
(2016).

[15] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882 (2014).

[16] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980 (2014).
[17] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted

collaborative filtering model. In KDD’08. 426–434.
[18] Yehuda Koren, Robert Bell, Chris Volinsky, et al. 2009. Matrix factorization

techniques for recommender systems. Computer 42, 8 (2009), 30–37.
[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-

cation with deep convolutional neural networks. In NIPS’12. 1097–1105.
[20] Xiao Lin and Devi Parikh. 2016. Leveraging visual question answering for image-

caption ranking. In ECCV’16. Springer, 261–277.
[21] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[22] T Mikolov and J Dean. 2013. Distributed representations of words and phrases

and their compositionality. NIPS’13 (2013).
[23] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,

and Qiang Yang. 2008. One-class collaborative filtering. In ICDM’08. 502–511.
[24] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola.

2016. Stochastic Variance Reduction for Nonconvex Optimization. In ICML’16.
314–323.

[25] Steffen Rendle. 2010. Factorization machines. In ICDM’10. 995–1000.
[26] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. InUAI’09. AUAI
Press, 452–461.

[27] Ruslan Salakhutdinov and Andriy Mnih. 2011. Probabilistic matrix factorization.

In NIPS’11, Vol. 20. 1–8.
[28] Ajit P Singh and Geoffrey J Gordon. 2008. Relational learning via collective

matrix factorization. In KDD’08. 650–658.
[29] Jian Tang,MengQu,MingzheWang,Ming Zhang, Jun Yan, andQiaozhuMei. 2015.

Line: Large-scale information network embedding. In WWW’15. 1067–1077.
[30] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep

content-based music recommendation. In NIPS’13. 2643–2651.
[31] Chong Wang and David M Blei. 2011. Collaborative topic modeling for recom-

mending scientific articles. In KDD’11. 448–456.
[32] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative deep learning

for recommender systems. In KDD’15. 1235–1244.
[33] Markus Weimer, Alexandros Karatzoglou, and Alex Smola. 2008. Improving

maximum margin matrix factorization. Machine Learning 72, 3 (2008), 263–276.

[34] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional

networks for text classification. In NIPS’15. 649–657.
[35] Peilin Zhao and Tong Zhang. 2014. Accelerating minibatch stochastic gradient

descent using stratified sampling. arXiv preprint arXiv:1405.3080 (2014).
[36] Peilin Zhao and Tong Zhang. 2015. Stochastic Optimization with Importance

Sampling for Regularized Loss Minimization. In ICML’15. 1–9.
[37] Yin Zheng, Bangsheng Tang, Wenkui Ding, and Hanning Zhou. 2016. A Neural

Autoregressive Approach to Collaborative Filtering. In ICML’16. 764–773.
[38] Ke Zhou, Shuang-Hong Yang, and Hongyuan Zha. 2011. Functional matrix

factorizations for cold-start recommendation. In SIGIR’11. 315–324.
[39] Yong Zhuang, Wei-Sheng Chin, Yu-Chin Juan, and Chih-Jen Lin. 2013. A fast

parallel SGD for matrix factorization in shared memory systems. In Recsys. 249–
256.

On Sampling Strategies for Neural Network-based Collaborative Filtering KDD ’17, August 13-17, 2017, Halifax, NS, Canada

SUPPLEMENTARY MATERIAL
A PROOFS
Here we give the proofs for both the lemma and the proposition introduced in the main paper. For brevity, throughout we assume by default

the loss function L is the pointwise loss of Eq. (1) in the main paper. Proofs are only given for the pointwise loss, but it can be similarly

derived for the pairwise loss. We start by first introducing some definitions.

Definition 1. A function f is L-smooth if there is a constant L such that

∥∇f (x) − ∇f (y)∥ ≤ L∥x − y∥

Such an assumption is very common in the analysis of first-order methods. In the following proof, we assume any loss functions L is

L-smooth.

Property 1. (Quadratic Upper Bound) A L-smooth function f has the following property

f (y) ≤ f (x) + ∇f (x)T (y − x) +
L

2

∥y − x ∥2

Definition 2. We say a function f has a σ -bounded gradient if ∥∇fi (θ)∥2 ≤ σ for all i ∈ [n] and any θ ∈ Rd .

For each training iteration, we first sample a mini-batch of links (denoted by B) of both positive links (B+) and negative links (B−),
according to the sampling algorithm (one of the Algorithm 2, 3, 4, 5), and then the stochastic gradient is computed and applied to the

parameters as follows:

θ t+1 = θ t −
ηt
m

∑
(u,v)∈B+t

c+uv∇L
+ (θ |u,v) −

ηt
n

∑
(u,v)∈B−t

c−uv∇L
− (θ |u,v) (3)

Here we use L+ (θ |u,v) to denote the gradient of loss function L+ (θ) given a pair of (u,v). Andm, n are the number of positive and negative

links in the batch B, respectively.

Lemma 1. (unbiased stochastic gradient) Under sampling Algorithm 2, 3, 4, 5, we have EB [∇LB (θ t)] = ∇L (θ t). In other words, the stochastic
mini-batch gradient equals to true gradient in expectation.

Proof. Below we prove this lemma for each for the sampling Algorithm. For completeness, we also show the proof for Uniform Sampling

as follows. The main idea is show the expectation of stochastic gradient computed in a randomly formed mini-batch equal to the true

gradient of objective in Eq. 1.

IID Sampling. The positive links in the batch B are i.i.d. samples from Pd (u,v) (i.e. drawn uniformly at random from all positive links),

and the negative links in B are i.i.d. samples from Pd (u)Pn (v), thus we have

EB [∇LB (θ
t)]

=
1

m

m∑
i=1
E(u,v)∼Pd (u,v)[c

+
uv∇L

+ (θ |u,v)] +
1

n

n∑
i=1
E(u,v)∼Pd (u)Pn (v ′)[c

−
uv ′∇L

− (θ |u,v ′)]

=Eu∼Pd (u)

[
Ev∼Pd (v |u)[c

+
uv∇L

+ (θ |u,v)] + Ev ′∼Pn (v ′)[c
−
uv ′∇L

− (θ |u,v ′)]

]

=∇L (θ t)

(4)

The first equality is due to the definition of sampling procedure, the second equality is due to the definition of expectation, and the final

equality is due to the definition of pointwise loss function in Eq. 1.

Negative Sampling. In Negative Sampling, we have batch B consists of i.i.d. samples ofm positive links, and conditioning on each positive

link, k negative links are sampled by replacing items in the same i.i.d. manner. Positive links are sampled from Pd (u,v), and negative items

are sampled from Pn (v
′), thus we have

EB [∇LB (θ
t)]

=
1

m

m∑
i=1
E(u,v)∼Pd (u,v)

1

k

k∑
j=1
Ev ′∼Pn (v ′)[c

+
uv∇L

+ (θ |u,v) + c−uv ′∇L
− (θ |u,v ′)]

=Eu∼Pd (u)

[
Ev∼Pd (v |u)[c

+
uv∇L

+ (θ |u,v)] + Ev ′∼Pn (v ′)[c
−
uv∇L

− (θ |u,v ′)]

]

=∇L (θ t)

(5)

The first equality is due to the definition of sampling procedure, and the second equality is due to the properties of joint probability

distribution and expectation.

KDD ’17, August 13-17, 2017, Halifax, NS, Canada Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong

Stratified Sampling (by Items). In Stratified Sampling (by Items), a batch B consists of links samples drawn in two steps: (1) draw an

item v ∼ Pd (v), and (2) draw positive users u ∼ Pd (u |v) and negative users u ′ ∼ Pd (u) respectively. Additionally, negative terms are also

re-weighted, thus we have

EB [∇LB (θ
t)]

=Ev∼Pd (v)

[
1

m

m∑
i=1
Eu∼Pd (u |v)[c

+
uv∇L

+ (θ |u,v)] +
1

n

n∑
i=1
Eu∼Pd (u)[c

−
uv

Pn (v)

Pd (v)
∇L− (θ |u,v)]

]

=E(u,v)∼Pd (u,v)[c
+
uv∇L

+ (θ |u,v)] + E(u,v)∼Pd (u)Pd (v)[c
−
uv

Pn (v)

Pd (v)
∇L− (θ |u,v)]

=E(u,v)∼Pd (u,v)[c
+
uv∇L

+ (θ |u,v)] + E(u,v)∼Pd (u)Pn (v)[c
−
uv∇L

− (θ |u,v)]

=Eu∼Pd (u)

[
Ev∼Pd (v |u)[c

+
uv∇L

+ (θ |u,v)] + Ev ′∼Pn (v ′)[c
−
uv∇L

− (θ |u,v ′)]

]

=∇L (θ t)

(6)

The first equality is due to the definition of sampling procedure, and the second, the third and the forth equality is due to the properties of

joint probability distribution and expectation.

Negative Sharing. In Negative Sharing, we only draw positive links uniformly at random (i.e. (u,v) ∼ Pd (u,v)), while constructing
negative links from sharing the items in the batch. So the batch B we use for computing gradient consists of bothm positive links and

m(m − 1) negative links.
Although we do not draw negative links directly, we can still calculate their probability according to the probability distribution from

which we draw the positive links. So a pair of constructed negative link in the batch is drawn from (u,v) ∼ Pd (u,v) = Pd (v)Pd (u |v).
Additionally, negative terms are also re-weighted, we have

EB [∇LB (θ
t)]

=
1

m

m∑
i=1
E(u,v)∼Pd (u,v)[c

+
uv∇L

+ (θ |u,v)] +
1

m(m − 1)

m (m−1)∑
j=1

E(u,v)∼Pd (u,v)[c
−
uv

Pn (v)

Pd (v)
∇L− (θ |u,v)]

=Eu∼Pd (u)

[
Ev∼Pd (v |u)[c

+
uv∇L

+ (θ |u,v)] + Ev ′∼Pn (v ′)[c
−
uv ′∇L

− (θ |u,v ′)]

]

=∇L (θ t)

(7)

The first equality is due to the definition of sampling procedure, and the second equality is due to the properties of joint probability

distribution and expectation.

Stratified Sampling with Negative Sharing. Under this setting, we follow a two-step sampling procedure: (1) draw an item v ∼ Pd (v), and
(2) draw positive users u ∼ Pd (u |v). Negative links are constructed from independently drawn items in the same batch. So the batch B
consists ofm positive links and n negative links.

We can use the same method as in Negative Sharing to calculate the probability of sampled negative links, which is also (u,v) ∼ Pd (u,v).
Again, negative terms are re-weighted, thus we have

EB [∇LB (θ
t)]

=
1

m

m∑
i=1
Ev∼Pd (v),u∼Pd (u |v)[c

+
uv∇L

+ (θ |u,v)] +
1

n

n∑
j=1
E(u,v)∼Pd (u,v)[c

−
uv

Pn (v)

Pd (v)
∇L− (θ |u,v)]

=E(u,v)∼Pd (u,v)[c
+
uv∇L

+ (θ |u,v)] + E(u,v ′)∼Pd (u)Pn (v ′)[c
−
uv ′∇L

− (θ |u,v ′)]

=Eu∼Pd (u)

[
Ev∼Pd (v |u)[c

+
uv∇L

+ (θ |u,v)] + Ev ′∼Pn (v ′)[c
−
uv ′∇L

− (θ |u,v ′)]

]

=∇L (θ t)

(8)

The first equality is due to the definition of sampling procedure, and the second, third and fourth equality is due to the properties of joint

probability distribution and expectation. □

Proposition 1. Suppose L has σ -bounded gradient; let ηt = η = c/
√
T where c =

√
2(L (θ 0)−L (θ ∗)

Lσ 2
, and θ∗ is the minimizer to L. Then, the

following holds for the sampling strategies given in Algorithm 2, 3, 4, 5

min

0≤t ≤T−1
E[∥∇L (θ t)∥2] ≤

√
2(L (θ0) − L (θ∗))

T
σ

On Sampling Strategies for Neural Network-based Collaborative Filtering KDD ’17, August 13-17, 2017, Halifax, NS, Canada

Proof. With the property of L-smooth function L, we have

E[L (θ t+1)] ≤ E[L (θ t) + ⟨∇L (θ t),θ t+1 − θ t ⟩ +
L

2

∥θ t+1 − θ t ∥2] (9)

By applying the stochastic update equation, lemma 1, i.e. EB [∇LB (θ
t)] = ∇L (θ t), we have

E[⟨∇L (θ t),θ t+1 − θ t ⟩ +
L

2

∥θ t+1 − θ t ∥2]

≤ηtE[∥∇L (θ
t)∥2] +

Lη2t
2

E[∥∇LB (θ
t)∥2]

(10)

Combining results in Eq. ?? and ??, with assumption that the function L is σ -bounded , we have

E[L (θ t+1)] ≤ E[L (θ t)] + ηtE[∥∇L (θ
t)∥2] +

Lη2t
2b

σ 2

Rearranging the above equation we obtain

E[∥∇L (θ t)∥2] ≤
1

ηt
E[L (θ t − L (θ t+1)] +

Lηt
2b

σ 2
(11)

By summing Eq. ?? from t = 0 to T − 1 and setting η = c/
√
T , we have

min

t
E[∥∇L (θ t)∥2] ≤

1

T

T−1∑
0

E[∥L (θ t)∥2]

≤
1

c
√
T
(L (θ0) − L (θ∗)) +

Lc

2

√
T
σ 2

(12)

By setting

c =

√
2(L (θ0) − L (θ∗))

Lσ 2

We obtain the desired result. □

B VECTOR DOT PRODUCT VERSUS MATRIX MULTIPLICATION
Here we provide some empirical evidence for the computation time difference of replacing vector dot product with matrix multiplication.

Since vector dot product can be batched by element-wise matrix multiplication followed by summing over each row. We compare two

operations between two square matrices of size n: (1) element-wise matrix multiplication, and (2) matrix multiplication. A straightforward

implementation of the former has algorithmic complexity of O (n2), while the latter has O (n3). However, modern computation devices such

as GPUs are better optimized for the latter, so when the matrix size is relatively small, their computation time can be quite similar. This

is demonstrated in Figure ??. In our choice of batch size and embedding dimension, n ≪ 1000, so the computation time is comparable.

Furthermore, ti ≪ tд , so even several times increase would also be ignorable.

Figure 9: The computation time ratio between matrix multiplication and element-wise matrix multiplication for different
square matrix sizes.

KDD ’17, August 13-17, 2017, Halifax, NS, Canada Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong

C FUNCTIONAL EMBEDDING VERSUS FUNCTIONAL REGULARIZATION
In this work we propose a functional embedding framework, in which the embedding of a user/item is obtained by some function such as

neural networks. We notice another approach is to penalize the distance between user/item embedding and the function output (instead

of equate them directly as in functional embedding), which we refer as functional regularization, and it is used in [32]. More specifically,

functional regularization emits following form of loss function:

L (hu , hv) + λ∥hu − f (xu)∥2

Here we point out its main issue, which does not appear in Functional Embedding. In order to equate the two embedding vectors,

we need to increase λ. However, setting large λ will slow down the training progress under coordinate descent. The gradient w.r.t. hu is

∇huL (hu , hv)+
λ
2
(hu −f (xu)), so when λ is large, ht+1u → ft (xu), which means hu cannot be effectively updated by interaction information.

	Abstract
	1 Introduction
	2 A General Framework for Neural Network-based Collaborative Filtering
	2.1 Text Recommendation Problem
	2.2 Functional Embedding
	2.3 Loss Functions for Implicit Feedback
	2.4 Stochastic Gradient Descent Training and Computational Challenges

	3 Mini-Batch Sampling Strategies For Efficient Model Training
	3.1 Computational Cost in a Graph View
	3.2 Existing Mini-Batch Sampling Strategies
	3.3 The Proposed Sampling Strategies
	3.4 Computational Cost and Convergence Analysis

	4 Experiments
	4.1 Data Sets
	4.2 Experimental Settings
	4.3 Speedup Under Different Sampling Strategies
	4.4 Recommendation Performance Under Different Sampling Strategies

	5 Related Work
	6 Discussions
	7 Conclusions and Future Work
	References

