
Beyond Clicks: Dwell Time for Personalization

Xing Yi Liangjie Hong Erheng Zhong Nathan Nan Liu Suju Rajan
{xingyi, liangjie, erheng, nanliu, suju}@yahoo-inc.com

Personalization Sciences, Yahoo Labs, Sunnyvale, CA 94089, USA

ABSTRACT
Many internet companies, such as Yahoo, Facebook, Google and
Twitter, rely on content recommendation systems to deliver the
most relevant content items to individual users through personaliza-
tion. Delivering such personalized user experiences is believed to
increase the long term engagement of users. While there has been
a lot of progress in designing effective personalized recommender
systems, by exploiting user interests and historical interaction data
through implicit (item click) or explicit (item rating) feedback, di-
rectly optimizing for users’ satisfaction with the system remains
challenging. In this paper, we explore the idea of using item-level
dwell time as a proxy to quantify how likely a content item is rel-
evant to a particular user. We describe a novel method to compute
accurate dwell time based on client-side and server-side logging
and demonstrate how to normalize dwell time across different de-
vices and contexts. In addition, we describe our experiments in
incorporating dwell time into state-of-the-art learning to rank tech-
niques and collaborative filtering models that obtain competitive
performances in both offline and online settings.

Categories and Subject Descriptors: H.3.5 [Information Storage
and Retrieval]: Online Information Services

General Terms: Theory, Experimentation

Keywords: Content Recommendation, Personalization, Dwell
Time, Learning to Rank, Collaborative Filtering

1. INTRODUCTION
Content recommendation systems play a central role in today’s

Web ecosystems. Companies like Yahoo, Google, Facebook and
Twitter are striving to deliver the most relevant content items to
individual users. For example, visitors to these sites are presented
with a stream of articles, slideshows and videos that they may be in-
terested in viewing. With a personalized recommendation system,
these companies aim to better predict and rank content of interest
to users by using historical user interactions on the respective sites.
The underlying belief is that personalization increases long term
user engagement and as a side-benefit, also drives up other aspects
of the services, for instance, revenue. Therefore, there has been a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or corecsysercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RecSys’14, October 6–10, 2014, Foster City, Silicon Valley, CA, USA.
Copyright 2014 ACM 978-1-4503-2668-1/14/10 ...$15.00.
http://dx.doi.org/10.1145/2645710.2645724.

Figure 1: A snapshot of Yahoo’s homepage in U.S. where the
content stream is highlighted in red.

lot of work in designing and improving personalized recommender
systems.

Traditionally, simplistic user feedback signals, such as click
through rate (CTR) on items or user-item ratings, have been used
to quantify users’ interest and satisfaction. Based on these read-
ily available signals, most content recommendation systems essen-
tially optimize for CTR or attempt to fill in a sparse user-item rating
matrix with missing ratings. Specifically for the latter case, with the
success of the Netflix Prize competition, matrix-completion based
methods have dominated the field of recommender systems. How-
ever, in many content recommendation tasks users rarely provide
explicit ratings or direct feedback (such as ‘like’ or ‘dislike’) when
consuming frequently updated online content. Thus, explicit user
ratings are too sparse to be usable as input for matrix factorization
approaches. On the other hand, item CTR as implicit user interest
signal does not capture any post-click user engagement. For ex-
ample, users may have clicked on an item by mistake or because
of link bait, but are truly not engaged with the content being pre-
sented. Thus, it is arguable that leveraging the noisy click-based
user engagement signal for recommendation can achieve the best
long term user experience. In fact, a recommender system needs
to have different strategies to optimize short term metrics like CTR
and long term metrics like how many visits a user would pay in
several months. Thus, it becomes critical to identify signals and
metrics that truly capture user satisfaction and optimize these ac-
cordingly.

We argue that the amount of time that users spend on content
items, the dwell time, is an important metric to measure user en-

gagement on content and should be used as a proxy to user satis-
faction for recommended content, complementing and/or replacing
click based signals. However, utilizing dwell time in a personalized
recommender system introduces a number of new research and en-
gineering challenges. For instance, a fundamental question would
be how to measure dwell time effectively. Furthermore, different
users exhibit different content consumption behaviors even for the
same piece of content on the same device. In addition, for the same
user, depending on the nature of the content item and the context,
the user’s content consumption behavior can be significantly dif-
ferent. Therefore, it would be beneficial to normalize dwell time
across different devices and contexts. Also, recommender sys-
tems usually employ machine learning-to-rank (MLR) techniques
and collaborative filtering (CF) models, with a wide range of fea-
tures, to obtain state-of-the-art performance. Using dwell time in
these frameworks is not straight-forward.

In this paper, we use the problem of recommending items for the
content feed or stream on the Yahoo’s homepage, shown in Figure
1, as a running example to demonstrate how dwell time can be em-
bedded into a personalized recommendation system. We have de-
signed several approaches for accurately computing item-level user
content consumption time from large-scale web browsing log data.
We first use the log data to determine when each item page gains or
loses the user attention. Capturing the user’s attention on an item
page enables us to compute per-user item-level dwell time. In ad-
dition, we leverage content consumption dwell time distributions
of different content types for normalizing users’ engagement sig-
nals, so that we can use this engagement signal for recommending
multiple content type items to the user in the content stream. We
then incorporate dwell time into machine learning-to-rank (MLR)
techniques and collaborative filtering (CF) models. For MLR, we
propose to use per-user item-level dwell time as the learning tar-
get, which can be easily considered in all existing MLR models,
and demonstrate that it can result in better performances. For CF,
we use dwell time as a form of implicit feedback from users and
demonstrate that a state-of-the-art matrix factorization model to in-
corporate this information can yield competitive and even better
performances than the click-optimized counterpart. To be more
specific, we have made the following contributions in this paper:

• A novel method to compute fine-grained item-level user con-
tent consumption time for better understanding users’ inter-
ests is proposed.

• A novel solution to normalize dwell time for multiple
content-type items across different devices is proposed and
presented.

• An empirical study of dwell time in the context of content
recommendation system is presented in this paper.

• A MLR framework to utilize dwell time is proposed and its
effectiveness in real-world settings is demonstrated.

• A CF framework to utilize dwell time is proposed and its
effectiveness against non-trivial baselines is presented.

The paper is organized as follows. In §2, we review three related
research directions. In §3, we demonstrate how dwell time can
be measured and present some of its interesting characteristics. In
the following sections, we show two important use cases for dwell
time. In §4, we show how dwell time can be used in MLR to obtain
superior performance than the models that optimize CTR. In §5,
we plug dwell time into the state-of-the-art CF models and demon-
strate that we can obtain competitive performance. We conclude
the paper in §6.

2. RELATED WORK

In this section, we review three related research directions. First,
we examine how dwell time is studied and used in web search or IR
domains. We will carefully analyze which of the existing practices
and experiences, on dwell time computation, can be utilized in the
context of personalization. We then list several pointers for MLR
as it has been extensively studied in the past decade, followed by
a brief discussion on CF, paying special attention to how implicit
user feedback is used in CF.

Dwell Time in Other Domains: A significant amount of previ-
ous research on web search has investigated using post-click dwell
time of each search result as an indicator of its relevance for web
queries and how it can be applied for different web search tasks. All
such previous research focused on examining the dwell time’s util-
ity for improving search results. For instance, White and Kelly [15]
demonstrated that using dwell time can potentially help improve
the performance of implicit relevance feedback. Kim et al. [8]
and Xu et al. [17, 18] showed that using webpage-level dwell time
can help personalize the ranking of the web search results. Liu
et al. [11] investigated the necessity of using different thresholds
of dwell time, in order to derive meaningful document relevance
information from the dwell time for helping different web search
tasks. To the best of our knowledge, we are the first to use dwell
time for personalized content recommendation. Furthermore, we
consider different types of content (news articles, slideshows and
videos), present several approaches to accurately measure content
consumption time, and use the dwell time for understanding users’
daily habit and interests. Most recently, Youtube has started to use
users’ video time spent instead of the click event 1 to better measure
the users’ engagement with video content. In contrast, we focus on

Learning To Rank in Web Search: The field of MLR has sig-
nificantly matured in the past decade, mainly due to the popularity
of search engines. Liu [12] and Li [10] provide an in-depth sur-
vey on this topic. Here, we point out that a fundamental issue with
all existing MLR models is that they all optimize for relevance, an
abstract yet important concept in IR. In the standard setting, the
“relevance” between a particular query and a list of documents is
objective and the same for all users. For IR, “relevance” is judged
by human experts through a manual process and is difficult to scale
to millions of real queries. In order to personalize IR, a natural
alternative to “relevance” is to optimize CTR. In this paper, we ex-
plore the possibility of optimizing for dwell time under the existing
framework of gradient boosted decision trees [6]. However, other
MLR models can also be used such as pair-wise models (e.g., Rank-
Boost [5] and AdaRank [16]) and list-wise models (e.g., RankNet
[3] and ListNet [4]). Note that, we do not seek to propose new MLR
models, but instead show the advantage of utilizing dwell time in
existing models.

Collaborative Filtering: In CF systems, users’ satisfaction with
the items is usually not considered. Almost all previous work in
CF (e.g., [9, 1]) take only explicit feedback such as ratings, or “im-
plicit” click-based feedback into account. Hu et al. [7] considered
implicit feedback signal, such as whether a user clicks or reviews an
item, and incorporated it into the matrix factorization framework.
Rendle et al. [13] proposed a learning algorithm for binary implicit
feedback datasets, which is essentially similar to AUC optimization.
None of them went beyond binary implicit feedback to investigate
the interactions between users and items. The approach of Yin et
al. [19] is the closest to our work. In that paper, the authors used
a graphical model on the explicit feedback signals and dwell time

1http://youtubecreator.blogspot.com/2012/08/youtube-now-why-
we-focus-on-watch-time.html

Table 1: Client-side Logging Example

User Behaviors Client-side Events
A user opens a news article page. {DOM-ready, t1}
He reads the article for several
seconds.

{Focus, t2}

He switches to another browser
tab or a window to read other arti-
cles.

{Blur, t3}

He goes back to the article page
and comments on it.

{Focus, t4}

He closes the article page, or
clicks the back button to go to an-
other page.

{BeforeUnload, t5}

data to predict the user’s score. Our work is different in that our
model does not require the presence of explicit user feedback.

3. MEASURING ITEM DWELL TIME
In this section, we describe how dwell time can be measured

from web logs and show its basic characteristics.

3.1 Dwell Time Computation
Accurately computing item-level dwell time from web-scale user

browsing activity data is a challenging problem. As an exam-
ple, most modern browsers have a multi-tabbed interface in which
users can open multiple stories simultaneously and switch between
them. In the multi-tabbed setting, figuring out the tab that captured
the user’s attention is non-trivial. In this paper we describe two
complementary methods to derive dwell time, one via client-side
logging and the other via server-side logging. We have also con-
ducted a simple study comparing these two approaches. Although
client-side logging can capture fine-grained user behavior and has
the potential of being highly useful, there is a lot of dependency
on browser implementation and potential for large amounts of data
loss. Therefore, when the client-side data is not available, we resort
to reasonable approximation methods through server-side logging.
Thus, we can reliably compute dwell time in a real world setting.

Client-Side Dwell Time: Client-side logging utilizes
Javascript/DOM events 2 to record how users interact with
the content story pages. Let us imagine the scenario demonstrated
in Table 1 where the left column is a sequence of user interactions
with a news article and the right column contains the correspond-
ing client-side events, in the form of {event name, time stamp}
tuples. In these events, DOM-ready indicates the ready-time
of the body of the page, which can be considered as the start of
the dwell time. Focus indicates that the user’s focus was back
on the body of the news article. Blur means that the article
body lost the user attention. BeforeUnload is the time point
immediately prior to the page being unloaded. Based on these
events, we can compute dwell time on the client-side by simply
accumulating time differences between Focus event and Blur
events. From the above example, we have the dwell time as:
(t3 − t2) + (t5 − t4). We can clearly see that client-side approach
can accurately capture users’ actual attention even in multi-tabbed
modern browsers. The major drawback of client-side logging is
that it relies on the correctness of Javascript execution and on
servers successfully receiving and logging client-sent data. Data

2http://en.wikipedia.org/wiki/DOM_events

Table 2: Comparison of dwell time measurement. The first two
columns are for LE, the middle two columns are for FB and
the last two columns are for client-side logs. Each row contains
data from a day.

DT. (LE) # DT. (FB) # DT. (C)
3, 322 86.5 3, 197 134.4 3, 410 130.3
5, 711 85.4 5, 392 132.6 5, 829 124.0

●
● ● ●

● ● ● ●
● ●

● ●

●

●
● ● ●

●
●

●

●
●

●
● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ●
● ●

●
●

● ●

● ●

●

●
● ●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ●

● ●
● ●

● ●

●

● ●
●

●

●

●
●

●
● ● ● ● ● ●

● ● ● ●

D
esktop

Tablet
M

obile

0.0 2.5 5.0 7.5
LogDwellTime

Devices
●
●
●

Desktop
Tablet
Mobile

Figure 2: The (un)normalized distribution of log of dwell time
for articles across different devices. The X-axis is the log of
dwell time and the Y-axis is the counts (removed for proprietary
reasons).

loss in this client-server interaction can be very high, for example,
because of loss in internet connection. In addition, users may also
disable Javascript in their browsers.

Server-Side Dwell Time: When client-side logs are not avail-
able, we resort to server-side logging to infer users’ attention on
item pages. The computation of dwell time on server-side are built
on a number of heuristics. One approach is to simulate client-
side user attention events by identifying pseudo Focus and Blur
events from server logs. Consider the following sequence of log-
ging events:

{i,Click, t1} → {j,Click, t2} → {k,Click, t3}

where each event is a tuple of an item id, a event type and a times-
tamp. The dwell time for i and j can be computed as t2 − t1 and
t3 − t2 respectively. A more complicated example is:

{i,Click, t1} → {j,Click, t2} → {k,Click, t3} →
{i,Comment, t4} → {n,Click, t5}

where the dwell time for page i can be computed as (t2 − t1) +
(t5 − t4). We denote this as FB (Focus/Blur) method. Another
simpler heuristic is called LE (Last Event) method, which is to take
the last event of the page as the end-page event and compute the
interval of the first-event timestamp and the last one. From the ex-
ample above, the dwell time of page i by LE would be t4 − t1.
Both approximation methods have their own weaknesses: 1) The
FB approach can over-estimate the dwell time because servers do
not know the exact time the target story page loses its user atten-
tion. For the above example, if the last click happens on some other
page, (t5 − t4) interval could includes some user time spent out-
side the target page. The FB approach might also under-estimate
the dwell time because servers also do not accurately know the time

●
●●

●
●●

●
●

●●
●

●
●

●

●●●

●

●●
●●

●
●●

●
●●

●●

●●

●

●

●
● ●

●●

●

●

●●

●

●
●●

●

●

●
●

●
●

●
●

●●

●
●

●●
●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●
●

●

●●

●

50

75

100

125

150

250 500 750 1000 1250
Article Length

A
ve

ra
ge

 D
w

el
l T

im
e

Devices
●
●
●

Desktop
Tablet
Mobile

Figure 3: The relationship between the average dwell time and
the article length where X-axis is the binned article length and
the Y-axis is binned average dwell time.

the target page gains user attention. For the above example, if users
have returned to the target page and read it for some additional time
before commenting at t4, the dwell time computation will not in-
clude the additional time. 2) The LE approach does not consider
the scenario in which the users’ reading focus could switch among
multiple browser page tabs, thus over-estimating the dwell time.
On the other hand, because the LE approach conservatively uses
the last event on the target page to compute dwell time and servers
do not know when the user abandons or closes the page (without
the client-side unload event), it can also under-estimate the dwell
time.

Because both approaches could over-estimate or under-estimate
the item-level dwell time, we conducted a simple comparison study
among FB, LE and the client-side logging. The results are shown
in Table 2. The purpose of this study is to explore which server-
side approach can be used to better approximate the client-side log-
ging. We use two days’ server-side logging events and client-side
logging events for article pages, and compute the average dwell
time by each method. Note that even for the same time period,
different approaches use different sets of events to compute dwell
time (see above example) and client-side events can be lost. Thus,
the total number of articles considered varies (the first, the third
and the fifth column). From the table, we can see that the average
dwell time computed by the FB approach is very close to the client-
side logging.Meantime, the LE approach greatly under-estimates
the dwell time, compared with the client-side events. This result
shows: through simulating users’ reading attention switch events
from server-side, the FB approach better handles item-level dwell
time computation in multi-tabbed modern browser setting. There-
fore, we now use FB as a relative reliable fall-back proxy to mea-
sure the item-level dwell time from server-side logging events when
client-side logging is not available.

3.2 Dwell Time Analysis
In order to understand the nature of it, we analyze per-item per-

user dwell time from a large real-world data collection from Yahoo.
We plot the unnormalized distribution of log of dwell time in Fig-
ure 2. The data used for this figure is from one month’s Yahoo
homepage sample traffic. It is obvious that the log of dwell time
follows a bell-curve. Many would guess the distribution of log of
dwell time is a Gaussian distribution. However, Q-Q plot and also

●

●
●

●
● ●

● ●
● ●

●

● ● ●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

● ●

●

●

●

●

●
●

● ●

●
●

●

●

●

●
●

●

●

●

● ●
●

●

● ●

●

● ●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

50

75

100

125

150

10 20 30
The Number of Photos

A
ve

ra
ge

 D
w

el
l T

im
e

Devices
●
●
●

Desktop
Tablet
Mobile

Figure 4: The relationship between the average dwell time and
the number of photos on a slideshow where X-axis is the binned
number of photos and the Y-axis is binned average dwell time.

Shapiro–Wilk test [14] reject such an assertion. A further study of
its formal distribution is in future work. Regardless of its normal-
ity, we observe that the bell-curve pattern holds for different time
periods and different types of devices (see Figure 5 and 6, which
we will discuss later).

Since dwell time approximates the time users spend on an item,
it is natural to assume that given the same content quality, a longer
news article would attract longer average dwell time across all
users. In order to demonstrate this behavior, we investigate this
issue on text heavy news article 3, and plot a scatter-plot of aver-
age dwell time per article versus article length in Figure 3 where
X-axis is the length of article and the Y-axis is the average dwell
time of that particular article from all users. In order to show things
clearly, the dwell times and article lengths are binned into smaller
buckets where each point represents a bucket. We show the scatter-
plot of the dwell time against the length of the article on different
devices, namely desktop, tablet and mobile devices. The black line
is a fitted linear line for a particular device type with the 0.95 con-
fidence interval in the grey area. From the figure, it is very clear
that the length of the article has good linear correlation with the av-
erage dwell time across devices. Also, matching our intuition, the
average dwell time on desktop is longer for long articles and the
reading behavior on tablet and mobile devices are similar. Further-
more, the correlation becomes weaker when articles are very long:
for desktop when the article is longer than 1,000 words, the plot
has big variance; this indicates that users may have run out of their
time-budget to consume the complete long story. Although the high
correlation between the length of articles and average dwell time
naturally leads to using the length of articles as a feature to pre-
dict average dwell time, we point out based on the observed data:
(1) per-user dwell time (rather than binned average dwell time over
all users) has little correlation with the article length; and (2) long
dwell time may not necessarily reflect that users are really inter-
ested in the article. In other words, content length alone can hardly
explain the per-user per-item dwell time, and we need to be care-
ful of the bias of dwell time based user engagement measurements
towards long length content stories. (We will revisit this issue in
§3.4.)

3For other content types such as slideshow and video, the content
length could be the number of slides in the slideshow and the video
clip’s raw duration, respectively.

●
● ●

●

●

●

●

●
●

●

●
●

● ● ●
● ● ● ● ● ● ● ●

●●●

●●

●●

●
●

●
●●

●

●

●

●
●

●
●●●●●●●●

●●●

●●

●●

●●

●

●
●

●
●

●
●●●●●●●●●

D
esktop

Tablet
M

obile

0 3 6 9
LogDwellTime

Devices
●
●
●

Desktop
Tablet
Mobile

Figure 5: The (un)normalized distribution of log of dwell time
for slideshows across different devices. The X-axis is the log of
dwell time and the Y-axis is the counts (removed for proprietary
reasons).

For slideshows, a natural assumption would be that the larger the
number of photos/slides, the longer the average dwell time these
items would receive over all users. We demonstrate the relation-
ships between the number of photos and the average dwell time on
slideshows in Figure 4. Again, we binned the number of photos
and the average dwell time. It is clear that the correlation is not
as strong as the length of articles. For videos, we also observe the
similar weak correlations between the duration of a video clips’ and
it’s average dwell time.

3.3 Normalized Dwell Time
As may be obvious, users’ consumption of content items varies

by context. For example, in historical data, we found that users
have on average less dwell time per article on mobile or tablet de-
vices than on desktops. Also, users on average spend less time per
slideshow than per article. Indeed, different content types, by their
nature, would result in different browsing behaviors; thus we would
expect different dwell times among these content types. In order
to extract comparable user engagement signals, we introduce the
normalized user dwell time to handle users’ different content con-
sumption behaviors on different devices for personalization. The
technique discussed here can also be used to blend multiple con-
tent sources (e.g., slide-shows and articles) into a unified stream.

Although the distributions of users’ per-item dwell time (from
all users) for each content type is different, we found that each con-
tent type’s distribution remains similar over a long time period. To
demonstrate this observation, we further plot the log of dwell time
of two important types of content: slideshows and videos in Fig-
ure 5 and Figure 6, respectively. Similar to the article case, we do
not report the absolute values for both types. However, the pat-
terns are again obvious. In all these cases, the log of dwell time
has Gaussian-like distributions. Indeed, most of the dwell time dis-
tributions for each different content-type on different device plat-
forms all surprisingly share the similar pattern. The same conclu-
sion holds for different lengths of the time period. Also, we can
easily see that the peak of log of dwell time is highest for videos,
followed by articles and slideshows, which matches our intuitive
understanding of these three types of content items.

Thus, the basic idea is, for each consumed item, we would like
to extract its dwell time based user engagement level such that it is
comparable across different context (e.g. content types, devices, in-

● ●
●

●
● ●

● ● ● ● ●
●

●

●

●
● ● ●

●

●

●
● ● ● ● ● ●

● ● ●
● ● ● ●

● ● ●

● ●

●

●

●
● ●

●

●

●
●

●

● ● ● ● ●
●

● ● ●
●

●

●

●

●
●

● ●

●

●
●

● ●

D
esktop

Tablet
M

obile

0 2 4 6
LogDwellTime

Devices
●
●
●

Desktop
Tablet
Mobile

Figure 6: The (un)normalized distribution of log of dwell time
for videos across different devices. The X-axis is the log of dwell
time and the Y-axis is the counts.

strumentations, etc.). We do this by normalizing out the variance of
the dwell time due to differences in context. In particular, we adopt
the following procedure to normalize dwell time into a comparable
space:

1. For each content consumption context C, collect the histor-
ical per-item time spent data and compute the mean µC and
standard deviation σC , both in log space.

2. Given a new content item i’s time spent tI in its context Ci,
compute the z-value in log space: zi =

log(ti)−µCi
σCi

.
3. Compute the normalized dwell time of item i in the article

space: t
i,article = exp(µarticle + σarticle × zi).

In other words, all other types of items are now “comparable” after
this transformation, and the normalized user engagement signals
are then used for training recommendation models to handle differ-
ent content types and can be deployed in different contexts.

3.4 Predicting Dwell Time
The average dwell time of a content item can be viewed as one

of the item’s inherent characteristic, which provides important aver-
age user engagement information on how much time the user will
spend on this item. Predicting average dwell time for each con-
tent item can help labeling items when their dwell time are not
available/missing. For example, content items that have never been
shown to users (such as new items) will not have available dwell
time. As another example, a user’s dwell time on her clicked story
may not be always be computed because there may be no subse-
quent server-side events from the same user. Therefore, leveraging
predicted average dwell time can greatly improve the “coverage”
(or alleviate the missing data issue). Not handling these situations,
could degrade the effectiveness of applying dwell time in person-
alization applications. In this sub-section, we present a machine
learning method to predict dwell time of article stories using sim-
ple features.

The features we consider are topical category of the article and
the context in which the article would be shown (e.g., desktop,
tablet or mobile). We use Support Vector Regression (SVR)4 mod-
els to predict dwell time. The model is trained from a sample of
user-article interaction data. We show the features and their corre-
sponding weights in Table 3. Most features are categorical and we
use log(Dwell Time) as the model response. We can loosely in-
4http://www.csie.ntu.edu.tw/˜cjlin/liblinear/

Table 3: Features and corresponding weights for predicted
dwell time. The features are shown in the order of magnitude of
weights. The left column shows positive weights and the right
negative weights.

Name Weight Name Weight
Desktop 1.280 Apparel -0.001
Mobile 1.033 Hobbies -0.010
Tablet 0.946 Travel & Tourism -0.039
Content Length 0.218 Technology -0.040
Transportation 0.136 Environment -0.065
Politics 0.130 Beauty -0.094
Science 0.111 Finance -0.151
Culture 0.100 Food -0.173
Real Estate 0.088 Entertainment -0.191

terpret the weights of these features as how much that feature con-
tributes to the article’s average dwell time prediction. The feature
weights match our current expectation for average users’ article
reading behavior: longer articles can lead to higher predicted av-
erage dwell time; people spend a longer time reading articles on
desktop devices than mobile devices; more serious topics can lead
users to dwell longer. Potentially, the predicted average dwell time
could be leveraged to normalize the dwell time-based user engage-
ment signal (as discussed in §3.3); however, this is non-trivial as the
interplay between the dwell time features and users’ experience is
not obvious. For example, will recommending more serious topics
that have long average dwell lead to better or worse user experi-
ence? We will leave answering this question for future work.

4. USE CASE I: LEARNING TO RANK
In this section, we investigate how to leverage item-level dwell

time to train machine-learned ranking (MLR) models for content
recommendation.

The Basic MLR Setting: In traditional MLR, a query q is repre-
sented as a feature vector q while a document d is represented as a
feature vector d. A function g takes these two feature vectors and
outputs a feature vector xq,d = g(q,d) for this query-document
pair (q, d). Note that g could be as simple as a concatenation. Each
query-document pair has a response yq,d, in traditional IR, which
is usually the relevance judgment. Typically this judgment is com-
mon to all users, that is, there is no user-specific personalization.
Depending on the particular paradigm (e.g., point-wise, pair-wise
or list-wise), a machine learned model imposes a loss function l
which takes one or all documents belonging to a query q as the
input, approximating the individual relevance judgment, pair-wise
relevance preferences or the whole list ordering. In the context of
content recommendation, we can simply borrow the idea of MLR
by treating user interests as queries and articles (or other types of
items) as documents. Although this formulation looks promising,
there are two challenges. One is how to construct a feature vector
for queries (users) and the second is how to utilize user activities
to infer relevancy between users and documents. The discussion of
the first question is out of this paper’s scope. Here, we focus on
the second question. While the definition of relevance judgments
might be unambiguous in IR, it is not straightforward in the con-
text of content personalization. One cheap and easy approach is to
use users’ click-through data as relevance judgments. Essentially,
in such case, we use yd,u = {0, 1}, a binary variable, to indicate
whether an article d (the “document” in IR setting) is clicked by
the user u (the “query” in IR setting). Under this formalism, a MLR
model indeed optimizes (CTR).

In this paper, we use the Gradient Boosted Decision Tree (GBDT)
algorithm [6] to learn the ranking functions. GBDT is an additive
regression algorithm consisting of an ensemble of trees, fitted to
current residuals, gradients of the loss function, in a forward step-
wise manner. It iteratively fits an additive model as:

ft(x) = Tt(x; Θ) + λ

T∑
t=1

βtTt(x; Θt) (1)

such that a certain loss function L(yi, fT (xi)) (e.g., square loss,
logistic loss) is minimized, where Tt(x; Θt) is a tree at iteration t,
weighted by a parameter βt, with a finite number of parameters Θt,
and λ is the learning rate. At iteration t, tree Tt(x;β) is induced to
fit the negative gradient by least squares. That is:

Θ̂ = argmin
β

N∑
i

wi(−Git − βtTt(xi);Θ)2 (2)

where wi is the weight for data instance i, which is usually set
to 1, and Git is the gradient over the current prediction function:
Git =

[
∂L(yi,f(xi))

∂f(xi)

]
f=ft−1

. The optimal weights of tree βt are

determined by βt = argminβ

∑N
i L(yi, ft−1(xi) + βT (xi, θ)).

More details about GBDT, please refer to [20]. As mentioned
above, if we use click/non-click as responses, we simply treat
xi = xq,d and yi = yd,u. In fact, all previous research on MLR-
based content recommendation system has been focusing on using
click-based information for training and evaluation. For example,
Bian et al. [2] and Agarwal et al. [1] have used users’ click/view
data in Today module in Yahoo for optimizing CTR for content rec-
ommendation.

Dwell Time for MLR: There are two intuitive ways to incorpo-
rate dwell time into MLR frameworks. Let γd be the average dwell
time for article d. Taking the GBDT algorithm mentioned above, we
could have: 1) Use the per-article dwell time as the response, treat-
ing yi = h(γd) and 2) Use the per-article dwell time as the weight
for sample instances, treating wi = h(γd) where the function h
is a transformation of the dwell time. In both cases, we promote
articles that have high average dwell time and try to learn models
that can optimize for user engagements. In all our experiments, we
found that h = log(x) yields the best performance.

We show the effectiveness of MLR model firstly from an offline
experiment. We use data from a bucket of traffic of a Yahoo prop-
erty and split it uniformly at random into training and test sets,
using a 70-30 split. We repeat this sampling multiple times and
the average results across all train-test splits are shown in Table 4.
The first observation is that either method of using dwell time as
learning target or instance weight can improve three major ranking
metrics. The second observation is that, dwell time as an instance
weight leads to the best performance. We further validate these
findings in online buckets, shown in Figure 7. Without disclosing
the absolute numbers, we show the same three buckets with respect
to two types of performance metrics: 1) CTR (shown on the top)
and 2) a user engagement metric(shown on the bottom). The user
engagement metric is a proprietary one, which can be explained as
the quality of users’ engagement with Yahoo homepage’s content
stream. Each data point represents the metric on a particular day.
We report the bucket metrics for a three month period between June
2013 and August 2013. Initially, the three buckets were running the
same linear model and we can see from the first three data points
(three-day data), both CTR and the user engagement metric are sim-
ilar. Then, we update the models as follows: 1) A: a linear model
optimizes click/non-click, 2) B: a GBDT model optimizes click and

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

● ●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ●

● ●

●
●

●

●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

● ●

● ●

●

●

● ●

●

●

●

● ●
●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

C
T

R
U

ser E
ngagem

ent

Jun 15 Jul 01 Jul 15 Aug 01
Date

Buckets
●

●

●

●

●

●

A
B
C
A
B
C

Figure 7: The relative performance comparison between three
buckets. The top figure shows the relative CTR difference and
the bottom figure shows the relative user engagement differ-
ence.

Table 4: Offline Performance for Learning to Rank
Signal MAP NDCG NDCG@10
Click as Target 0.4111 0.6125 0.5680
Dwell Time as Target 0.4210 0.6201 0.5793
Dwell Time as Weight 0.4232 0.6226 0.5820

3) C: a GBDT model optimizes dwell time h(γd). It is interesting
that after updating models, we observe a divergence of the perfor-
mances. Bucket A becomes the worst performing bucket in both
metrics while bucket C outperforms other buckets consistently for
almost two months time until all buckets were ended. Therefore,
from our empirical experiences, optimizing dwell time not only
achieves better user engagement metrics but also improves CTR as
well. One plausible cause is when optimizing towards dwell-based
engaging signals rather than high CTR, users may better like the
content recommended, come back to the site and click more. We
leave the thorough analysis of this finding as future work.

5. USE CASE II: COLLABORATIVE FIL-
TERING

In the previous section, we elaborated how dwell time can be
used in the context of MLR, requiring enough per-item interaction
activities from a user to build usable interest profile. Thus, it is
very challenging for the previous approach to recommend content
to users who are not very active (e.g. new users), or to recommend
new content that has no overlap with the users’ historically read
items. CF techniques utilize user engagement signals on particular
stories to discover users who have similar reading interest from a
broad audience and target them with the same or similar content. In
this section, we validate how dwell time can be used in CF frame-
works to better improve the performance.

We formalize the problem into the classic matrix factorization
framework where latent features of items and user latent features
are jointly learnt from a user-item interaction matrix. Matrix fac-
torization models [9] have provided state-of-the-art performance
in many CF problems. In prior work, MF models were developed
to operate on discrete user ratings (e.g., movie ratings) as labels,
thus making it difficult to directly apply these models in settings
where explicit ratings are usually missing or hard to collect. For

instance, users come to Yahoo’s homepage to consume news items
such as articles, videos and slideshows by only browsing and click-
ing on particular items that they are interested in without providing
any explicit rating feedback, even though the user interface allows
users to “like” or “dislike” the item. Therefore, users’ feedback
under this context is implicit.

In this paper, we propose to use dwell time of users rather than
asking them to give ratings or using click information as implicit
rating feedback. User feedback is represented as a M × N sparse
matrix I , where M is the number of users, and N is the number
of items, and each entry in the matrix is one user feedback, which
is denoted as ri,j . For dwell time, ri,j ∈ R or [0, 6] for normal-
ized dwell time; for click/view, ri,j ∈ [0, 1]. Formally, we aim to
predict the unobserved entries in the matrix based on the observed
data. Rank-based matrix factorization is used. We decompose the
sparse matrix I as U and V , to minimize the following objective
function:

argmin
U,V

M∑
i=1

∑
ri,j<ri,k

Ui(Vj − Vk)
T + λ(|U |2 + |V |2) (3)

where ri,j refers to positive examples, ri,k refers to negative ex-
amples. The difference between the training process of dwell time
and click is the bootstrap process of negative examples. For click,
no-click feedbacks are treated as negative data. For dwell time,
for each click with dwell time, we randomly sample another click
feedback with less dwell time or non-click feedback.

Dataset: The data used in this experiment is collected from a
bucket (a small sample traffic) of a Yahoo property, spanning a
three month period. We perform training on the first three months
and prediction on last month. We further remove the users and
items with less than 10 clicks. In this dataset, we have 147, 069 dis-
tinct users and 11, 535 distinct items, yielding 4, 358, 066 events in
the training set and 199, 420 events in the test set.

Evaluation Method and Metrics: We group users by time pe-
riods and construct sessions of all items a user consumed in a par-
ticular time period (e.g., months, day, hour and etc.). Instead of
evaluating how well we can predict clicks/non-clicks, we evaluate
the proposed methods in terms of ranking metrics. We use Mean
Average Precision (MAP) and Normalized Discounted Cumulative
Gain (NDCG) as main evaluation metrics. We start the definition of
metrics by focusing on a particular user. Let Precision@k for a par-
ticular user in one session as: Prec@k = 1

k

∑k
j=1 rj where k de-

notes the truncation position and rj is whether the ranked document
at the j position is relevant or not. Average Precision, the measure
using two levels of relevance judgement, is depended on the ba-
sis of Precision AP = 1

|D+|
∑

j rj ×Prec@j where |D+| denotes
the number of relevant items with respect to the user in this session.
Given a ranked list for a session, we can compute an AP for this ses-
sion. Then MAP is defined as the mean of AP over all sessions for
all users. NDCG@k is a measure for evaluating top k positions of a
ranked list using multiple levels (labels) of relevance judgement. It
is defined as NDCG@k = N−1

k

∑k
j=1

2
rj−1

log2(1+j)
where NDCG is just

for all positions.
Experimental Results: There are two different strategies for

evaluation. The first experiment takes the data from first three
months as training data while the last one as test data. The sec-
ond one is to use sliding window to perform daily or weekly pre-
diction. The overall performance is shown in Table 5 where the
table is split into three parts, the first part about monthly predic-
tion, the middle part about weekly prediction and the bottom part
about daily prediction. For weekly prediction and daily prediction,

Table 5: Performance for Collaborative Filtering
Performance for Monthly Prediction

Signal MAP NDCG NDCG@10
Click as Target 0.3773 0.7439 0.7434
Dwell Time as Target 0.3779 0.7457 0.7451

Performance for Weekly Prediction
Signal MAP NDCG NDCG@10
Click as Target 0.6275 0.5820 0.5813
Dwell Time as Target 0.6287 0.5832 0.5826

Performance for Daily Prediction
Signal MAP NDCG NDCG@10
Click as Target 0.6275 0.5578 0.5570
Dwell Time as Target 0.6648 0.5596 0.5589

the metrics are averaged numbers across multiple weeks or days.
We also vary the latent dimension K for both click version and
the dwell time version and only report the best performance across
different K values. We can observe that in all evaluation methods
and all metrics, the model to optimize dwell time has a comparable
performance as the one to optimize clicks. In addition, the per-
formance of dwell time based models are consistently better than
the click based ones. One plausible reason, for the small overall
improvement, is that content features or user-side information may
be needed for better predicting dwell time based rating. Deeper
analysis and experimentation on the benefit of dwell time based CF
models is future work.

6. DISCUSSION AND CONCLUSIONS
In this paper, we demonstrated how dwell time is computed from

a large scale web log and how it can be incorporated into a person-
alized recommendation system. Several approaches are proposed
for accurately computing item-level user content consumption time
from both client side and server side logging data. In addition,
we exploited the dwell time distributions of different content types
for normalizing users’ engagement signals into the same space.
For MLR, we proposed using per-user per-item dwell time as the
learning target and demonstrated that it can result in better perfor-
mances. For CF, we used dwell time as a form of implicit feed-
back from users and demonstrated how it can be incorporated into
a state-of-the-art matrix factorization model, yielding competitive
and even better performances than the click-optimized counterpart.
For future work, we would like to design dwell time based user
engagement metrics and explore how to optimize these metrics di-
rectly. We would also like to investigate better ways to normalize
dwell time. This will enable us to extract better user engagement
signals for training recommendation systems thereby optimizing
for long term user satisfaction.

7. REFERENCES
[1] D. Agarwal, B.-C. Chen, P. Elango, and R. Ramakrishnan.

Content recommendation on web portals. Communications
of the ACM, 56(6):92–101, June 2013.

[2] J. Bian, A. Dong, X. He, S. Reddy, and Y. Chang. User
action interpretation for online content optimization. IEEE
TKDE, 25(9):2161–2174, Sept 2013.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. In Proceedings of ICML, pages 89–96,
2005.

[4] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to
rank: From pairwise approach to listwise approach. In
Proceedings of ICML, pages 129–136, 2007.

[5] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient
boosting algorithm for combining preferences. The Journal
of Machine Learning Research, 4:933–969, Dec. 2003.

[6] J. H. Friedman. Stochastic gradient boosting. Computational
Statistics & Data Analysis - Nonlinear methods and data
mining, 38(4):367–378, Feb. 2002.

[7] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for
implicit feedback datasets. In Proceedings of ICDM, pages
263–272, 2008.

[8] Y. Kim, A. Hassan, R. W. White, and I. Zitouni. Modeling
dwell time to predict click-level satisfaction. In Proceedings
of WSDM, pages 193–202, 2014.

[9] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer,
42(8):30–37, Aug. 2009.

[10] H. Li. Learning to rank for information retrieval and natural
language processing. Synthesis Lectures on Human
Language Technologies, 4(1):1–113, 2011.

[11] C. Liu, J. Liu, N. Belkin, M. Cole, and J. Gwizdka. Using
dwell time as an implicit measure of usefulness in different
task types. Proceedings of the American Society for
Information Science and Technology, 48(1):1–4, 2011.

[12] T.-Y. Liu. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval,
3(3):225–331, 2009.

[13] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. BPR: Bayesian personalized ranking
from implicit feedback. In Proceedings of UAI, pages
452–461, 2009.

[14] S. S. Shapiro and M. B. Wilk. An analysis of variance test
for normality (complete samples). Biometrika 52 (3-4),
pages 591–611, 1965.

[15] R. W. White and D. Kelly. A study on the effects of
personalization and task information on implicit feedback
performance. In Proceedings of CIKM, pages 297–306, 2006.

[16] J. Xu and H. Li. Adarank: A boosting algorithm for
information retrieval. In Proceedings of SIGIR, pages
391–398, 2007.

[17] S. Xu, H. Jiang, and F. C. M. Lau. Mining user dwell time
for personalized web search re-ranking. In Proceedings of
IJCAI, pages 2367–2372, 2011.

[18] S. Xu, Y. Zhu, H. Jiang, and F. C. M. Lau. A user-oriented
webpage ranking algorithm based on user attention time. In
Proceedings of the 23rd National Conference on Artificial
Intelligence - Volume 2, pages 1255–1260, 2008.

[19] P. Yin, P. Luo, W.-C. Lee, and M. Wang. Silence is also
evidence: Interpreting dwell time for recommendation from
psychological perspective. In Proceedings of SIGKDD,
pages 989–997, New York, NY, USA, 2013. ACM.

[20] Z. Zheng, K. Chen, G. Sun, and H. Zha. A regression
framework for learning ranking functions using relative
relevance judgments. In Proceedings of SIGIR, pages
287–294, 2007.

	Introduction
	Related Work
	Measuring Item Dwell Time
	Dwell Time Computation
	Dwell Time Analysis
	Normalized Dwell Time
	Predicting Dwell Time

	Use Case I: Learning to Rank
	Use Case II: Collaborative Filtering
	Discussion and Conclusions
	References

