
Learning to Rank Social Update Streams

Liangjie Hong
∗

†, Ron Bekkerman§, Joseph Adler§, Brian Davison†

† Dept. of Computer Science and Engineering, Lehigh University, Bethlehem, PA, USA
§ LinkedIn Corp., Mountain View, CA, USA

{lih307,davison}@cse.lehigh.edu, {rbekkerman,jadler}@linkedin.com

ABSTRACT

As online social media further integrates deeper into our lives, we
spend more time consuming social update streams that come from
our online connections. Although social update streams provide a
tremendous opportunity for us to access information on-the-fly, we
often complain about its relevance. Some of us are flooded with a
steady stream of information and simply cannot process it in full.
Ranking the incoming content becomes the only solution for the
overwhelmed users. For some others, in contrast, the incoming in-
formation stream is pretty weak, and they have to actively search
for relevant information which is quite tedious. For these users,
augmenting their incoming content flow with relevant information
from outside their first-degree network would be a viable solution.
In that case, the problem of relevance becomes even more promi-
nent.

In this paper, we start an open discussion on how to build effec-
tive systems for ranking social updates from a unique perspective
of LinkedIn – the largest professional network in the world. More
specifically, we address this problem as an intersection of learning
to rank, collaborative filtering, and clickthrough modeling, while
leveraging ideas from information retrieval and recommender sys-
tems. We propose a novel probabilistic latent factor model with
regressions on explicit features and compare it with a number of
non-trivial baselines. In addition to demonstrating superior perfor-
mance of our model, we shed some light on the nature of social up-
dates on LinkedIn and how users interact with them, which might
be applicable to social update streams in general.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous; H.3.3
[Information Storage and Retrieval]: Information Search and
Retrieval

General Terms

Algorithms, Experimentation, Theory

∗Part of this work was done when the first author was on an intern-
ship at LinkedIn Corp.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’12, August 12–16, 2012, Portland, Oregon, USA.
Copyright 2012 ACM 978-1-4503-1472-5/12/08 ...$10.00.

Keywords

Social network, Social Stream, Learning to rank, Collaborative fil-
tering

1. INTRODUCTION
In the current Web ecosystem, social media services are ubiq-

uitous. With the rise of websites like Facebook, Twitter, and
LinkedIn, millions of users are connecting and communicating with
each other over rich multimedia content, including text, images,
video, and audio. The content forms streams of social updates,
which allow users to get instantly informed on the latest news.
When aggregated, the social update streams become a powerful
tool for monitoring the geopolitical situation in various regions.
For instance, social update streams have been heavily used to dis-
seminate information during the “Arab spring”. In addition, social
update services become the ultimate platform for collecting infor-
mation in natural disasters, such as earthquakes and tsunamis [20].

Although social update streams provide a unique opportunity for
users to obtain fresh information, users commonly acknowledge
two issues that prevent current social streams from being suffi-
ciently relevant, which causes deterioration of user experience and
engagement. First of all, while facing a large number of updates
from their social connections, users simply cannot consume them
in an effective and efficient way. This is known as the problem of
information overload (see, e.g., [3, 12]). Furthermore, social up-
dates for a user are usually limited in scope to their social circle,
induced from their connections. Thus, it is very difficult for a user
to obtain information distributed outside of their circle, even though
it might match their interests. In order to obtain relevant informa-
tion, users spend long hours searching social media (see, e.g., [2,
21]). We call this problem information shortage. To address both
these problems, social media monitoring systems are being built,
which filter and recommend social updates to users based on nu-
merous signals. This area has recently attracted close attention of
academic and industrial research communities.

The task of filtering and recommending social updates can be
approached from various perspectives. From the Information Re-
trieval (IR) perspective, constructing personalized social streams
can be cast into the classic ranking problem: the task is to rank
social updates by descending order of user interest. It may be true
that some existing IR techniques could be potentially applied to
social stream ranking. However, user’s interests in social streams
are not represented in terms of a search query. Instead, queries are
implicit and have to be inferred. The absence of a search query
distinguishes the social stream ranking problem from many classic
IR tasks. In addition, social information needs are more diversified
compared to traditional IR scenarios. Although traditional IR tools
do not appear to be directly applicable to ranking in social streams,

some of recently developed learning to rank approaches are very
appealing to be used in the new setting.

From the perspective of Recommender Systems (RecSys), build-
ing a list of relevant social updates can be viewed as recommend-
ing relevant items to users. Thus, many collaborative filtering tech-
niques are applicable to the task of social stream ranking. However,
social stream systems are much more dynamic than traditional rec-
ommender systems: many new updates can be pushed into the sys-
tem every second. Therefore, the cold start problem becomes even
more severe in social stream systems. The traditional collaborative
filtering paradigm needs to be adjusted to ranking social streams.

Surprisingly, little prior research work has been done to tackle
the problem of social stream ranking from the point of view of
building an effective system. This is partially due to the fact that
no real-world dataset of social updates is openly available to the re-
search community – due to obvious reasons related to user privacy.
Most commercial ranking algorithms (e.g., the one used by Face-
book) are proprietary. Indeed, a successful content ranking system
on social streams will not only provide more relevant information
to users and improve user engagement, but also shed the light on
patterns of user behavior and social trends, which might be strong
signals for behavioral targeting in computational advertising – the
driving power of most Web 2.0 venues.

In this paper, we start an open discussion on how to build ef-
fective systems for social stream ranking (SSR). To the best of our
knowledge, we are the first group of researchers to elaborate tech-
nical details for such a system. More specifically, we address the
problem as an intersection of learning to rank, collaborative filter-
ing and clickthrough modeling, while leveraging ideas from infor-
mation retrieval and recommender systems. Our contributions are
three-fold:

1. Analyze social streams (based on LinkedIn data) and provide
some insights on users’ behavior;

2. Propose a novel probabilistic latent factor model with regres-
sions on explicit features; integrate the idea of learning to
rank and collaborative filtering

3. Demonstrate the superior performance of our model by com-
paring with several non-trivial real-world baselines.

The rest of the paper is organized as follows. In Section 2, we
compare SSR with other related research areas. As we will point
out, SSR is a unique setup to which existing techniques cannot be
applied directly. In Section 3, we review the problem of social
stream ranking in the context of LinkedIn. In Section 4, we in-
troduce our ranking model step by step and compare it with some
existing IR and collaborative filtering techniques. In Section 5, we
evaluate our model against a number of non-trivial baselines. We
conclude our paper in Section 6.

2. RELATED WORK
In this section, we briefly overview three research directions re-

lated to social stream ranking: (a) learning to rank, (b) recom-
mender systems, and (c) clickthrough models. Some of the ap-
proaches to tackle these problems are relevant to SSR and can be
adapted. Along with their similarities to SSR, we also reveal their
significant differences from SSR, and discuss the uniqueness of
SSR as a new research field.

Learning to Rank (LtoR): In IR, a generic task is to construct
a ranked list of documents relevant to a query issued by a user.
Although ranking is a fundamental problem in IR and has been

studied for decades, it still remains challenging. Instead of propos-
ing carefully designed ranking models based on heuristics or tra-
ditional probabilistic principles, a recent trend is to apply machine
learning techniques to learn ranking functions automatically, i.e.,
LtoR [19]. In the standard LtoR setting, a typical training set con-
sists of queries with their associated documents represented by fea-
ture vectors as well as corresponding relevance judgements. A ma-
chine learning algorithm is employed to learn the ranking model,
which can predict the ground truth label in the training set as accu-
rately as possible – in terms of a loss function. In the test phase,
when a new query comes in, the learned model is applied to sort
the documents according to their relevance to the query, and re-
turn the corresponding ranked list to the user as the response to
the query. Depending on different hypotheses, input spaces, out-
put spaces and loss functions, approaches to LtoR can be loosely
grouped into three categories: point-wise, pairwise, and list-wise.

Although the goal of LtoR is to provide a ranked list of docu-
ments (items) for users – a similar aim as of SSR – it is different
from SSR in three aspects. First, social stream systems usually do
not have explicit queries and users do not have to specify any ex-
plicit input in order to obtain relevant output from the systems. Sec-
ond, each user’s social stream is highly dependent on their social
context. Therefore, compared to IR, social streams are intrinsically
personalized. The second difference leads to the third fundamen-
tal distinction between SSR and LtoR: relevance judgements are
difficult to obtain in SSR and the notion of relevance can be hard
to define. Nevertheless, some strategies and insights developed in
LtoR can be borrowed for SSR.

Recommender Systems (RecSys): As we will see, RecSys
plays a key role in many online services, improving user experi-
ence and engagement. In the simplest form, RecSys aim to present
a user with a list of items in the hope that these items would match
the user’s interests to some extent. Content-based methods and
neighborhood methods are widely used in RecSys. Content-based
methods convert the problem of recommendation into an IR prob-
lem by constructing user profiles and item profiles. A user profile
serves as a query to an index of item profiles. Similarity measures
(e.g., cosine similarity, Jaccard coefficient) are utilized to match
users and items. In contrast, neighborhood methods usually ex-
plore the notion of topical locality, assuming that the interaction
between users and items can be predicted solely upon observations
of “neighboring” users or items. That is, a user’s interest in an item
is approximated by the average of neighboring observations. Al-
though content-based methods and neighborhood methods are pop-
ular due to their simplicity, they cannot exploit hidden interactions
between users and items. Recently, another class of methods called
latent factor models has gained increasing attention. These meth-
ods are highly accurate and can easily incorporate various biases.
However, compared to content-based methods and neighborhood
methods, latent factor models are more vulnerable to the appear-
ance of new items and new users, i.e., to the cold-start problem.
Therefore, these three approaches are complementary to each other
in practice (e.g., [17]). In a general sense, SSR may be considered
as RecSys, however, SSR usually does not have item ratings, and
user feedback to SSR is often implicit.

Click-through Model (CM): both IR (see, e.g., [14, 9]) and
RecSys [25, 31] researchers have noticed that users’ feedback is
vital for learning a high-quality model. In order to derive users’
preferences and model users’ clickthrough data, a variety of CMs
have been proposed. The most common approach to clickthrough
modeling is to construct a generative model aiming to explain the
training data (see, e.g., [33, 13]). Other models that derive users’

preferences have been proposed as well (see, e.g., [25, 5, 31, 18]).
While generative models are specifically designed to understand
clickthrough data, it is difficult to incorporate them into current
IR or RecSys frameworks, partially due to the fact that generative
models are hard to adapt to optimizing a non-probabilistic objec-
tive. Indeed, it is easier to first obtain user preferences from click-
through data analysis and then adapt existing IR/RecSys tools to
using these preferences (e.g., [25, 5, 31]). Our paper is inspired
from this idea.

In addition to these three directions, some efforts have been made
to directly tackle the problem of SSR. For instance, Chen et al. [8]
discussed the problem of recommending content on Twitter by con-
sidering many dimensions, including content sources, topic inter-
ests of users and social voting. However, their study focused on
empirical validations of several features (signals) and the dataset
used is significantly smaller than ours. Their later work [7] goes
beyond single Tweet recommendation to conversation recommen-
dation. Duan et al. [11] noticed that the ranking problem of Twitter
can be treated as an application of learning to rank. Their dataset
is also small and relationships between recipients and senders are
not explored. As we have discussed, SSR is not simply a LtoR
problem. Choudhury et al. [10] argued that SSR should consider
the problem of “diversity” and they tested their greedy algorithm
on 67 employees from a large technology corporation. Our work
differs from all this related work in three significant ways: 1) we
test our proposed method on a large-scale, real-world dataset; 2) we
propose a principled way to address SSR in the context of LtoR, CF
and CM; and 3) we conduct comprehensive evaluation of our model
against several models that underlie state-of-the-art recommender
systems and report a consistent improvement in performance.

3. OVERVIEW OF LINKEDIN
Founded in December 2002 and launched in May 2003,

LinkedIn1 is primarily used for online professional networking.
As of March 2012, LinkedIn has more than 160 million registered
users in more than 200 countries and territories. On LinkedIn, user
profiles play a central role for establishing professional existence
and personal brand. Users can update their professional profiles
to include a spectrum of content types (e.g., position descriptions,
publications, patents, open source projects, skills, etc.). In addi-
tion, LinkedIn offers collaborative platforms to help users consume
relevant news stories (e.g., LinkedIn Today2), seek answers to ques-
tions on professional issues (e.g., LinkedIn Groups3), and share
useful content (e.g., LinkedIn Signal4). On the left-hand side of
LinkedIn’s homepage, a typical user will see a list of content items
that come from their professional connections. This update stream
consists of a wide range of types of updates including changes on
their profiles (e.g., changes in their employment), shares of infor-
mation (e.g., news articles, blog posts), and Twitter updates. These
updates compose a social stream for the user. A snapshot of a user’s
homepage is shown in Figure 1.

As we have discussed in previous sections, delivering truly rel-
evant social updates to users is a very difficult task. Information
overload is certainly a serious problem for users who have hun-
dreds of connections. In contrast, for newly joined users who do
not have a sufficient number of connections, a system could rec-
ommend potentially useful updates to make the user adapt to the
service more smoothly and quickly.

1http://www.linkedin.com
2https://www.linkedin.com/today/
3https://www.linkedin.com/myGroups
4https://www.linkedin.com/signal/

Figure 1: A typical example of LinkedIn homepage where the

social stream of a user is highlighted by a red rectangle, shown

on the left hand side of the screen.

From the LinkedIn point of view, it is important to attract users to
consume their social content and interact with their social streams
as it is a clear indicator of a healthy engagement pattern. A steady,
but badly delivered social stream may distract the user and make
them lose interest in the service. A weak social stream for new
users may make them question the benefits of the service. On the
other hand, if a user interacts with the social stream frequently,
clicking “Like” buttons or making comments to others’ updates,
the user is likely to become more and more engaged.

4. SOCIAL STREAM RANKING
In this section, we will discuss the ingredients of our proposed

model step by step, from a simple linear model to a much more
involved tensor factorization based latent factor model. We start our
discussion from why the problem of SSR cannot simply be treated
as a rating prediction problem, which is a classic setting in RecSys.

4.1 Evaluation Metrics
In traditional RecSys settings where the entities are users and

items (e.g., the famous Netflix competition5) forming a matrix of
users by items, the main goal is to predict or recover missing values
in this matrix – if we treat existing ratings as observed values and
non-existing ratings as missing values of the matrix. The perfor-
mance of recommender systems is evaluated by how accurately a
system can predict these values. For instance, in the Netflix Prize,
Rooted Mean Squared Error (RMSE) is used to measure the accu-

racy of rating predictions. RMSE is defined as
√

1
N

∑n

i
(xi − x̂i)2

where xi is the ground-truth rating for rating i, x̂i is the predicted
value and N is the total number of ratings to be tested. Although it

5http://www.netflixprize.com/

might be an appropriate evaluation metric for movie recommenda-
tion tasks where multiple levels of ratings are available, two crucial
issues will arise while using it as an evaluation metric to SSR.

First of all, as we see in Figure 1, the final presentation of a so-
cial stream is a list of items shown on the computer screen. Due
to the limited space on the screen, users can only see a portion of
the list which usually only consists of a handful of updates. Al-
though users can always scroll down the list and even go to ad-
ditional pages, not all of them do that in practice. Thus, even if
the accuracy of predictions is important, we certainly wish to have
higher-accuracy items on the top of the list rather than to have the
whole list slightly more accurate. This ordering information cannot
be easily captured in accuracy-based metrics, like RMSE. In addi-
tion to the reason that accuracy-based metrics may not be appropri-
ate, in the practical sense, a system optimizing accuracy might fail
to produce reasonable results. As we will see, the users rarely inter-
act with the majority of the updates. In other words, users are only
interested in a small number of items. An accuracy-optimized sys-
tem may overfit non-interacted items and yield good performance
overall but might not match the small portion of clicked updates.
Indeed, this drawback of accuracy-based metrics is also discussed
in the collaborative filtering literature (e.g., [25, 18, 31]).

Based on this discussion, we adopt rank-based metrics to eval-
uate the effectiveness of SSR systems. Rank-based metrics are
widely used in the IR community. In this paper, we borrow
Mean Average Precision from the traditional IR. We define the
“precision” at position k (Precision@k) of a social stream as
(# of clicks in top positions)/k. Then, an average measure across
all top m positions (Average Precision) for user u is defined
as (

∑m

k=1 Precision@k×lk)/(# of clicks for ranked list of user u)
where lk is a binary indicator whether the position k has been
clicked or not and m is the total number of positions evaluated.
Note that the Average Precision is evaluated per user. We can av-
erage it across all users, resulting in the Mean Average Precision
(MAP) measure.

4.2 Dataset
Before discussing the details of our dataset, we introduce the

concept of impression. Every time a user logs in LinkedIn’s home-
page, the system generates a list of candidate social updates from
many sources, mainly based on the user’s social connections. This
list of updates can be small or large, depending on the user’s so-
cial circle. If the number of updates in the list exceeds a certain
threshold (e.g., 10 − 15), these updates cannot be shown on a sin-
gle screen, and the user will need to scroll down. An impression is
a list of updates that a user has actually seen on the screen. Given
historical data, we can “replay” the users’ activity while analyzing
impressions. Note that social updates are not distinct: one specific
update produced by a user or a company can be shown to many
users.

Since our experimental setting is “simulation” (details will be
discussed in Section 4.1), we discard all impressions without any
clicks because these impressions do not change our experimental
results (as measured by MAP). Note that there is a deeper argument
on this decision. Remember that one issue associated with social
streams is their sparsity. Indeed, only a small number of impres-
sions attract users and a handful of clicks is performed on such im-
pressions, compared to the large amount of impressions produced
in total. Thus, it might be useless for any model to fit these non-
interacted impressions. Focusing on impressions that actually mat-
ter reduces the training set significantly and produces better results,
which we saw in our empirical studies. Thus, only impressions with

Data Summary April, 2011 September, 2011

Impressions 3M-4M 10M-20M
Updates 30M-40M 100M-200M

Clicked Updates 3M-4M 10M-20M

Non-clicked Updates 27M-36M 90M-180M

Distinct Updates 10M-20M 20M-30M

Recipients 1M-2M 4M-5M

Producers 4M-5M 6M-7M

Table 1: The basic statistics about the dataset.“M” means mil-

lion. The numbers are obfuscated due to commercial reason.

at least one click remain in our dataset. In our experiments, we also
filter out impressions with less than five items.

We report on two datasets of LinkedIn’s social update stream.
Both are subsamples of the actual social stream collected by
LinkedIn’s engineering team. The first dataset was taken from
April, 2011 stream, while the second was taken from September,
2011 stream. The basic statistics on the two datasets are shown in
Table 1. The reason why we take two datasets that are not conse-
quent in time is to demonstrate that the performance of different
algorithms is indeed consistent over different time periods.

4.3 Linear Models
In this section, we will discuss several simple linear models to

tackle the problem of SSR. Given a social update, a user can choose
to respond to this update or not. For simplicity, we treat all kinds of
responses as a “click” event and no response as a “non-click” event.
Thus, we focus on binary responses in this work. We denote y as
a vector of responses to all social updates, across all impressions.
This way, we concatenate updates from all impressions together
and drop the notion of an impression. The ordering of elements
in y does not matter as we only care about the correspondence:
the response yi corresponds to the i-th update in the entire dataset
and fi represents the estimation of yi from the models described
later. In addition, we define the following auxiliary functions: r(i)
is the recipient of update i, s(i) is the sender of update i, t(i) is the
type of update i, and c(i) is the sender type. Let R be the set of
recipients, S be the set of senders, T be the set of types, I be the
set of social updates.

Feature Model (FM): One straightforward model is linear es-
timation, which predicts the response by a linear combination of
features. For a specific update i, we collect their corresponding
features. Let φ be a feature vector – we use subscript to indicate
its corresponding type. For instance, φr(i) represents the feature
vector (e.g., profile) for the recipient user of update i. A simple
prediction of yi – a linear combination of user features and update
features – can be defined as:

f
(1)
i = β

T
r(i)φr(i) +α

T
r(i)φi (1)

where βu and αu are per-user coefficients to be learned from the
training set. This model is essentially equivalent to the one where
user features and update features are combined into a single feature
vector and a per-user coefficient to be learned. Note, an even more
simpler model could be also considered where a universal coeffi-
cient is used, instead of per-user coefficients. However, this model
would be too restricted and personalization cannot be applied.

Latent Bias Model (LBM): Here, we introduce a linear model
to explain the clicks on items. We start with an assumption that
whether a new item i will be clicked by a user depends on the av-
erage click rate: fi = µ where µ is the average click rate across
all items and all users. Certainly, this estimation is too coarse and

inaccurate because, as we mentioned before, the majority of items
are not clicked. We can extend this base estimation by incorporat-
ing a wide range of biases: 1) type (category) bias, 2) item bias, 3)
recipient bias, 4) sender type bias and 5) sender bias. Adding these
biases is very intuitive. Certain types of updates (e.g., notifications
about changes in user profiles, including changes in job titles etc.)
receive more attentions than others. Users tend to respond (e.g.,
click “Like” button or make comments) more often on these types
of updates than on others. In addition, some individual items are
more popular than others as their content might be more interest-
ing (e.g., breaking news, unexpected stories). From the perspective
of senders and recipients, biases are also significant. For instance,
some updates are coming from companies that inform their follow-
ers about their new products and services – those updates are far
more popular than status updates from individual users. Moreover,
certain users are more engaged than others which introduces user
biases. Therefore, all these biases (i.e., prior knowledge) can cap-
ture a wide range of effects of interactions. Let b denote biases and
the subscript to indicate the type of biases. Also, the subscript can
be an index for a feature. Therefore, we can have the following
linear estimation:

f
(2)
i = µ+ bi + bt(i) + br(i) + bc(i) + bs(i) (2)

Note that these biases are generally unknown. We treat them as
latent variables to be learned from the dataset. Comparing with
LR, which depends on feature vectors some of which might be dif-
ficult to calculate and update (e.g., graph-based features, content
based features), this model is appealing since no extra information
is needed for learning, besides requiring indicators.

Combining FM and LBM: It is straightforward to consider
combining FM and LBM together. Thus, the combined model will
enjoy the freedom that different parts of the model will explain a
variety of user behaviors. The combined model is simply:

f
(3)
i = f

(1)
i + f

(2)
i (3)

Note, this is essentially a linear feature model with biases decom-
posed into many aspects.

Incorporating Temporal Effects: Social streams are tempo-
rally sensitive in nature. Users focus on fresh information and
interact with them while they often do not bother to look at old
updates. We model the temporal effects of updates by a simple fea-
ture: trecency = timp− tupt where timp is the numerical time when
a user sees a particular impression and tupt is the numerical time
when an update is produced. These feature values would be differ-
ent for different updates. Even for the same update, depending on
when recipients access their update streams, the feature value can
vary greatly. Incorporating this feature into our estimation can be
as follows:

f4
i = f

(∗)
i + ζ × trecency (4)

where f
(∗)
i can be any estimator defined in Equations (1, 2 and 3)

and ζ is a free parameter, indicating the importance of recency of
updates. Note that ζ can be learned from the training set and can
also be treated as another personalized parameter. However, we
fix it across all users and manually tune this parameter mainly be-
cause of two reasons. Firstly, since not all users interact with social
streams regularly and new users are coming all the time, we need to
provide reasonably relevant social updates for these users. Under
these circumstances, explicit features might not be available (e.g.,
new users) and biases are not learned reliably from the training set
(e.g., not enough interactions before). Therefore, a safe choice is
to rank items chronologically. In addition to that, users who are

heavily engaged with their social streams are familiar with existing
ranking schemes which are primarily based on recency. We do not
want to suddenly change their expectations on their future impres-
sions. Hence, we set ζ such that the temporal effect can always be
an important factor and indeed the learned coefficients and biases
will dominate the estimation only when it is necessary.

Since responses are binary, we impose a logistic loss on predic-
tions and true values, yielding learning procedures of the logistic
regression flavor. All these linear models can be learned effectively
by minimizing the following objective function for each update i:

l1(yi, f
(∗)
i) = log

[

1 + exp(−yif
∗
i)
]

(5)

where yi ∈ {±1} is the ground-truth response and f∗
i is the esti-

mated response from the models defined above. In common prac-
tice, in order to avoid overfitting the training set, we also use L2

regularizer to shrink all parameters towards zero. Taking Equation
(4) as an example, the final objective function is:

L1 =
∑

i

l1(yi, f
4
i) + λ1

(

∑

i

||bi||
2 +

∑

t(i)

||bt(i)||
2 +

∑

c(i)

||bc(i)||
2

+
∑

r(i)

||br(i)||
2 +

∑

s(i)

||bs(i)||
2
)

+ λ2

∑

u

(

||βu||
2
F + ||αu||

2
F

)

where λ1 and λ2 are two regularization parameters to be manu-
ally tuned. Many methods are available to optimize the objective
function above. Here, we adopt the Stochastic Gradient Descent
(SGD) method, a widely used learning method for large-scale data,
to learn parameters. SGD requires gradients, which can be effec-
tively calculated as follows:

∂L1

∂b∗
= −

∑

i

[

1− σ(yif
4
i)
]

yi + 2λ1

∑

∗

b∗

∂L1

∂βr(i),k

= −
∑

i

[

1− σ(yif
4
i)
]

yiφr(i),k + 2λ2βr(i),k

∂L1

∂αi,k

= −
∑

i

[

1− σ(yif
4
i)
]

yiφi,k + 2λ2αi,k

where b∗ represents any bias terms, βr(i),k and αi,k represent k-th
element of coefficient for user r(i) and update i respectively. Note
that σ(x) = 1

1+exp(−x)
.

4.4 Latent Factor Models
Although linear models are efficient, they are usually oversim-

plified and cannot capture interactions between different effects.
Latent Factor Models (LFM) are widely used in recommender sys-
tems (e.g., [17, 29, 31, 30]) and have proven effective in many
scenarios (e.g., [17]). Specifically, LFM can model the interactions
between different types of entities such as user-user and user-item,
discovering their latent relationships. In this section, we discuss
two types of LFM: matrix factorization and tensor factorization,
and see how they can be applied to the task of SSR.

Matrix Factorization: In traditional CF, matrix factorization
techniques are used to exploit user-item interactions. A straightfor-
ward idea would be to directly apply matrix factorization methods
to user-update matrix. However, this idea is not practical. As dis-
cussed above, social streams have new updates arriving all the time,
and existing updates are only consumed by a small number of users.
Thus, cold-start problems are much more severe here, compared to
traditional CF where the user base and the item base are relatively
stable. Here, we impose a latent factor ηu ∈ R

k for each recipient
and producer and factorize the recipient-producer matrix to predict

Figure 2: CANDECOMP/PARAFAC decomposition of a ten-

sor, a three-way array. The dimensionality of three latent fac-

tors is the same.

the actions on updates. We describe the model in a probabilistic
way:

ηu ∼ P (ηu |0, σ2
I) u ∈ {R,S}

yi ∼ P (yi |ηr(i),ηs(i), b∗, µ)

where b∗ is any biases introduced in Section (4.3), R and S are the
set of recipients and producers respectively. For P (ηu |0, σ2I), it
is usually assumed to be Gaussian or Laplace, corresponding to L2

or L1 regularization on latent factors respectively. Here, we use a
multivariate Gaussian assumption. For P (yi |ηr(i),ηs(i), b∗, µ),
we assume:

yi ∼ P (yi | fi)

fi = µ+ bi + bt(i) + br(i) + bc(i) + bs(i) + η
T
r(i)ηs(i) + ǫ

where ǫ allows a Gaussian distribution. Thus, the final generative
process also follows a Gaussian distribution. This formalism is
similar to the one introduced in [17]. The model described here
is very intuitive. Whether a user u1 is going to click on an update
from a user/company u2 depends on u1’s and u2’s affinity.

Tensor Factorization: As social streams have different enti-
ties like recipients, producers and categories, it would be natural
to directly model the multi-way data interaction, rather than con-
centrating on two-way relationships. It has been shown that high-
order relational modeling can improve the performance of CF sys-
tems in many scenarios, for instance in social tag recommendations
[24, 26].Here, we focus on one particular three-way relationship:
recipient-producer-category of the update. We associate latent fac-
tors ηx ∈ R

k for these three types of entities. Similar to the matrix
case, we define the following generative procedures:

ηx ∼ P (ηx |0, σ
2
I) x ∈ {R,S , T }

yi ∼ P (yi | fi)

where fi is defined as:

fi = µ+bi+bt(i)+br(i)+bc(i)+bs(i)+
∑

k

ηr(i),kηs(i),kηt(i),k+ǫ

where η∗,k represents the k-th element in the vector and ǫ again
follows a Gaussian distribution. This particular form of tensor de-
composition is known as CANDECOMP/PARAFAC (CP) decom-
position [16], depicted in Figure 2. There are two important prop-
erties about CP decomposition. Firstly, it is a direct analogue to
factorization methods in two-way array (matrix) data where latent
factors share the same latent space. Secondly, CP decomposition
has a nice yet surprising property that it has a unique solution of
decomposition where matrix factorization does not enjoy this re-
sult [16]. This property indeed provides a theoretical guarantee to
the decomposition and may be a reason for better performance.

We are aware of other forms of tensor factorization as well. For
instance, Tucker decomposition [16], where the dimensionality of
different latent factors varies, is widely used in many applications

φ
rMr

πr

η
r br

Ms

η
s bs

πsφ
s

η
t bt

Mt
πtφ

t

bi µy

Figure 3: A graphical representation of regression-based ten-

sor factor model. Square nodes represent features and circled

nodes represents unknown variables. The response y in the

middle is observed in the training set but to be predicted in

the test set.

and applied to social media as well (e.g., [24, 29]). However, we do
not choose the Tucker decomposition for our settings because not
only it requires to pre-specify the dimensionality of all factors sepa-
rately, but also does not guarantee uniqueness of the decomposition
result.

Incorporating Features: Both matrix factorization and tensor
factorization discussed above do not directly incorporate explicit
features. Here, we introduce features into the model by employ-
ing two levels of regression models. The basic idea is that latent
features will depend on explicit features and final responses are de-
rived from latent features. The first level regression models are
defined as:

ηx(∗) = Mxφx(∗) + ǫx x ∈ {R,S ,T }

where φx(∗) represents a feature vector for entity x and Mx is a
transformation matrix to be learned. If ǫ∗ follows a zero-mean k-
dimensional Gaussian distribution, latent factors η∗ indeed follow
multivariate Gaussian distribution with the mean of a transforma-
tion of explicit feature vectors. This way, explicit feature space is
mapped to latent feature space.

In addition to binding latent factors to explicit features, other
biases may also have the same prior distributions:

bx(∗) = π
T
xφx(∗) + ǫbx

where πx is a regression coefficient for entity x. If the error term
ǫbx follows a Gaussian distribution, biases bx(∗) will also follow
a Gaussian distribution centered at a transformation from explicit
features. Note that this two-level regression scheme can be applied
to matrix factorization as well as tensor factorization. The idea
to use regression priors for matrix factorization has been explored
by [1, 30] but not yet discussed on multi-way data relations like
tensors. The final graphical representation of the model is shown
in Figure 3.

In addition to the method described here to incorporate features,
we are aware of other possibilities, such as [23] where latent factors
and explicit features are treated as same set of features.

Like linear models from Section 4.3, LFM (with features) can
also be learned through a Maximum A Posterior (MAP) estima-
tion. Taking Tensor Factorization with Features as an example, the
problem of minimizing the negative log posterior of the model boils

down to the following objective:

L2 =
∑

i

L1(yi, fi) +
∑

x∈{R,S,T }

λx

∑

x(i)

||ηx(i) −Mxφx(i)||
2
F

+
∑

x∈{I,R,S,T ,C}

λbx

∑

x(i)

||bx(i) − π
T
xφx(i)||

2

+
∑

x∈{I,R,S,T ,C}

(

λπx ||πx||
2
F + λMx ||M||2F

)

where all constant terms are ignored and all λ terms are manually
tuned regularization parameters. For both matrix factorization and
CP decomposition, a number of techniques are available to solve
the objective function. For instance, the alternating least squares
(ALS) method is the “workhorse” [16] for both matrix and tensor
factorization. However, here, we still adopt a SGD method, which
can scale to the dataset with which we are working. In order to
use SGD, the gradients of latent factors can be derived. Firstly, we
focus on latent factors:

∂L2

∂ηr(i),k

=−
∑

i

[

1− σ(yifi)
]

yiηs(i),kηt(i),k

+ 2λr

(

ηr(i),k −Mr[k]φr(i)

)

∂L2

∂ηt(i),k

=−
∑

i

[

1− σ(yifi)
]

yiηr(i),kηs(i),k

+ 2λt

(

ηt(i),k −Mt[k]φt(i)

)

∂L2

∂ηs(i),k

=−
∑

i

[

1− σ(yifi)
]

yiηr(i),kηt(i),k

+ 2λs

(

ηs(i),k −Ms[k]φs(i)

)

where η∗,k is the k-th element of the vector and M∗[k] is the k-th

row of the matrix. For all biases, gradients ∂L2
∂b

∗(i)
are as follows:

−
∑

i∈b
∗(i)

[

1− σ(yifi)
]

yi + 2λb∗

(

b∗(i) − π
T
∗ φ∗(i)

)

where ∗ means a particular type of bias and i ∈ b∗(i) represents the
updates those bias type match the type of interests. The gradients

∂L2
∂Mx[k,m]

for matrix Mx can be derived as:

2λx

∑

x(i)

(

ηx(i),k −Mx[k]φx(i)

)(

− φx(i),k

)

+2λMxMx[k,m]

where Mx[k,m] is the (k,m)-th element in the matrix Mx. And

finally, the gradients for regression coefficients ∂L2
∂πx,k

can be com-

puted as:

2λbx

∑

x(i)

(

bx(i) − π
T
xφx(i)

)(

− φx(i),k

)

+2λπxπx,k

4.5 Pairwise Learning
So far, we have demonstrated two different types of models: lin-

ear models and latent factor models. Both of them minimize cer-
tain errors in the learning process. As discussed in Section 4.1, a
ranking-based evaluation metric, MAP is used in our experiments.
Thus, it is more reasonable to directly optimize this ranking met-
ric. However, it is difficult to optimize ranking measures directly
[32, 6, 22] due to their discrete nature. Although some techniques
(e.g., [6, 22]) have been developed to derive smoothed surrogate
functions to approximate these ranking measures, including MAP,

they are usually complicated and expensive to apply to large scale
scenarios. Here, we use a much simpler approach: derive pairwise
preferences from users’ impressions and learn a pairwise ranking
function.

First, let Oi be the set of updates in the impression i, Oi,+ be the
set of updates clicked by the user and Oi,− be the set of updates not
clicked by the user. Remember that we eliminate impressions with-
out any clicks (see 4.2). Therefore, we guarantee that the method
described here can be applied to all impressions in our dataset. For
any pair of updates (m,n) where m ∈ Oi,+ and n ∈ Oi,−, we can
always construct a preference label lm,n = 1, meaning that update
m is favored over update n in impression i. Under this setting, we
have the new objective function for impression i:

l2(i, f) =
1

|Oi,+||Oi,−|

∑

m∈Oi,+

∑

n∈Oi,−

σ
(

fm − fn
)

(6)

where σ is a logit function. This new objective function is no longer
to fit a single observed label (click or not) but to optimize a pair-
wise preference induced from impressions. Similar ideas are also
explored in [25, 31, 18]. With this new objective function, we can
replace the original loss function defined in Equation (5) in both lin-
ear model learning and factor model learning. Gradients are omit-
ted due to space limits.

4.6 Summary & Discussion
We discussed several issues related to our proposed methods in

this sub-section: 1) parameter tuning, 2) scalability and 3) feature
treatment. For parameter tuning, while it is not a significant prob-
lem for Linear Models, as they can be trained efficiently, it might be
prohibitively expensive to tune a Latent Factor Model. In this work,
we do not heavily tune parameters and only wish to see whether
these proposed approaches work in principle. One way to deploy a
“parameter-free” model might be to consider a Bayesian treatment
of Latent Factor Models, like [27, 29]. However, the sheer amount
of data and its continuous nature prevent us to explore Bayesian
treatment in this work and leave it to the future work. In terms
of scalability, we conduct experiments on a single machine in this
work but we do notice that SGD can be paralleled [34]. Thus, we
can scale our model to even larger datasets. The way we integrate
explicit features and latent factors is through regression models.
However, this is not the only way to deal with this kind of prob-
lem. For instance, matrix co-factorization (see, e.g., [28]) and ten-
sor co-factorization can be another paradigm of combining explicit
features and hidden features.

5. EXPERIMENTAL RESULTS
In this section, we demonstrate the effectiveness of our model,

through a comprehensive comparison with non-trivial baselines.
The dataset used in our experiments is described in Section 4.2.
Before we go into the details of the experimental results, we first
discuss our experimental setting in Section 5.1 and then all devel-
oped models in Section 5.2.

5.1 Experimental Setting
Two standard settings are available to evaluate the effectiveness

of systems for SSR. One is to test each model against an existing
system in a online setting where both systems run in parallel for
a similar audience in a reasonable period of time. After this, the
effectiveness of both systems can be calculated using certain mea-
surements, like error rate or ranking metrics. This is a classic A/B
testing scenario. The advantage of A/B testing is obvious: it pro-
vides a real comparison between models. However, it might be

Models Comments

Baseline (BL) LinkedIn

Feature Model (FM) Section 4.3

Latent Bias Model (LBM) Section 4.3

Feature Bias Model (FBM) Section 4.3

Matrix Factorization (MF) Section 4.4

Tensor Factorization (TF) Section 4.4

Matrix Factorization with Features (MF2) Section 4.4

Tensor Factorization with Features (TF2) Section 4.4

Table 2: All models used in our experiments.

Features Comments

Seniority the seniority level of a user

Visiting how frequently a user visits LinkedIn

PageRank discretized PageRank scores

Connectedness how well a user is connected to others
Social strength how tight a user’s connections is

Professional how professional an update’s language is

Recency the freshness of an update (see Section 4.3)

Table 3: All features used in our experiments.

time-consuming and even impossible to compare many models in a
batch. In addition, some models require tuning parameters, which
may risk the business of the service a company offers. Thus, we do
not use A/B testing in this paper and leave it to the future work.

In this paper, we simulate real settings of SSR, conducting off-
line experiments. More specifically, we gather historical data from
LinkedIn user logs, which capturing all impressions users have con-
sumed. Since we know which updates are clicked in each impres-
sion, it is easy to replay all these impressions and reorder the up-
dates. Thus, we can produce a “new” impression for users in the
dataset. The drawback of this approach to experiments is that we
cannot show “new” ordering of impressions that are not clicked by
users at all because whether users would have clicked them or not
is impossible to test. This is another reason why we drop all im-
pressions without any clicks (Section 4.2).

The dataset for one month is divided into weeks. We train our
models on one week and test them on the following week. This
setting results in more than 70% items being new in test data each
week, which is an evidence to the fact that SSR is different from
RecSys and IR.

5.2 Models & Features
We compare several models in our experiments. All models used

in the following experiments are shown in Table 2. The baseline is
a proprietary system currently deployed in the product of LinkedIn
homepage. FM, LBM and their combination (FBM) are examples of
simple linear models while MF, TF with their feature enhanced ex-
tensions (MF2 and TF2) are examples of latent factor models. For
all models, a point-wise loss function (Equation (5)) and a pair-
wise loss function (6) are both tested. Without stating it explicitly,
all models include the temporal effect feature discussed in Section
(4.3) while the parameter ζ, the balance between recency and rele-
vance, is manually tuned. All regularization parameters are simply
set to 1. We understand that this may not be an optimal choice.
For tuning a reasonable learning rate in SGD and ζ, we use the first
day in the test week as a “validation” day and choose the parameter
setting that can provide the optimal performance on the day. We fix
the parameters for the remaining days in the test week.

Some of linear models and latent factor models require explicit
features. In this paper, we include several important features to en-
hance our models. Note that we are aware of many other possible

Training/Testing BL FM LBM FBM

4_01(Tr.)/4_08(Te.) 0.5278 0.5317 0.5943 0.5520
4_08(Tr.)/4_15(Te.) 0.5435 0.5509 0.6040 0.5574

4_15(Tr.)/4_22(Te.) 0.5218 0.5246 0.5823 0.5235

9_01(Tr.)/9_10(Te.) 0.4829 0.4911 0.5457 0.4984

9_10(Tr.)/9_18(Te.) 0.4779 0.4798 0.5432 0.4915

9_18(Tr.)/9_25(Te.) 0.4768 0.4803 0.5329 0.4886

Table 4: The comparison between linear models. The best per-

formance is shown in bold.

Type Description Bias bt

Job Seeker Product Update 0.5765

Joining Sub-Group 0.5407

Company News 0.4592

Joining Group 0.2625

Profile Picture Update 0.2516
Initiating Direct Ads Campaign 0.2253

Profile Update 0.1394

Table 5: Example of highly ranked types of updates

features. However, it is not our goal to study the effectiveness of a
particular feature in this work. All features are shown in Table 3.
“Seniority” measures the seniority level of a user’s job title. “Vis-
iting” measures how well engaged a user is (our assumption is that
a frequent visitor is likely to interact with his/her social stream).
“PageRank” (details in [4]) and “Connectedness” measure how a
user connects with other users. Presumably, a highly respected
and well connected user can attract others to interact with their up-
date streams. “Social strength” is a proprietary product used in
LinkedIn, measuring the connection closeness between two users.
“Professional” measures how likely an update is similar in its lan-
guage to professional profiles of LinkedIn users (i.e. how profes-
sional an update is). The assumption is that users may favor profes-
sional updates over non-professional updates on LinkedIn because
it is a professional social network.

5.3 Results on Linear Models
In this sub-section, we focus on the comparison between the

baseline and all linear models. In this Subsection, we focus on the
comparison between the baseline and all linear models. The results
are shown in Table 4. The first column indicates how models are
trained and tested. For instance, the first number “4_01” means the
models are trained on the week of April 1st and tested on the week
of April 8th (8-th is the date for validation of parameter tuning)
where “Tr.” and “Te.” are shorthand for “Training” and “Testing”,
respectively. We conduct experiments on two separate months to
avoid some seasonal fluctuations on the data. The numbers shown
on the right part of the table are MAP scores.

Our first observation is that the baseline of MAP in September is
lower than its in April, implying that updates in the lower positions
in the lists get clicked more often over time. One possible explana-
tion is that users become familiar with their social streams and start
to find interesting updates manually, looking at more items down
the list. The second observation is that all linear models, including
FM, LBM and FBM, perform better than the baseline, consistently on
two-month datasets. However, for FM, which only depends on ex-
plicit features, the performance is very close to the baseline. This
is reasonable because only a handful of features are used in our
experiments and we do expect that these features are not likely dis-
criminative. On the other hand, LBM, a model only depending on
implicit feedback, has consistently 5% − 6% absolute improve-
ments on MAP over the baseline. This confirms that it is vital

Training/Testing MF TF MF2 TF2

4_01(Tr.)/4_08(Te.) 0.5955 0.6258 0.5951 0.6336

4_08(Tr.)/4_15(Te.) 0.6079 0.6228 0.6088 0.6535

4_15(Tr.)/4_22(Te.) 0.5962 0.6014 0.5991 0.6312

9_01(Tr.)/9_10(Te.) 0.5511 0.5766 0.5523 0.6003

9_10(Tr.)/9_18(Te.) 0.5412 0.5833 0.5449 0.6109

9_18(Tr.)/9_25(Te.) 0.5359 0.5799 0.5362 0.5992

Table 6: The comparison between latent factor models. The

best performance is shown in bold.

to exploit different aspects of users’ feedbacks and capture them
through bias modeling (e.g., [17, 15]). Indeed, FBM gives the most
improvements over the baseline in all our experiments. The idea
is simple and easy to implement. For the combination of a pure
feature-based model FM and a pure implicit-feedback-based model
LBM, FBM does perform as someone might expect. It is signifi-
cantly worse than LBM and almost identical to FM, which might in-
dicate that simply integrating explicit features with biases may not
be a good choice and more sophisticated approaches are needed.
LBM can also reveal some interesting patterns from the dataset,

which might not be easily identified by other methods. For in-
stance, we can figure out the effective popularity of different types
of updates by looking at the values of bt. The positivity or negativ-
ity of these values indicate whether a particular type of update cor-
relates with clicks or non-clicks, while the magnitude of these val-
ues means how strongly this correlation might be. We show some
samples of top ranked types in Table 5, which are positively corre-
lated with clicks. From the table, we see that job related updates,
company-related updates are comparatively attractive. In addition,
users pay attention to profile changes of their connections and new
connections established by their friends. Note that the value shown
in the table is “automatically” normalized in the sense that SGD
only updates corresponding parameters when the algorithm meets
such type of updates. Also, the ratio of positive examples of a par-
ticular type will drive the parameter to strong positive numbers.
Thus, no post-processing steps are required. This is an example of
how our model can be used in simple data analysis tasks.

5.4 Results on Latent Factor Models
As we discussed earlier, latent factor models are widely used and

have been proven to be superior to linear models. We conduct the
same experiments as linear models and show their results in Ta-
ble 6. Here, we compare between pure factorization-based models
(MF and TF) and feature-enhanced factor models (MF2 and TF2).
Note that all these models are built upon LBM and therefore the
performance should at least match LBM. The second column of the
table shows the results from MF, which is essentially to factorize
the recipient-sender matrix and uncover latent structures. Unfor-
tunately, the gain of performance of MF over LBM is marginal and
even not observable. On the other hand, TF offers significant im-
provements and leads another 3%−4% absolute boost for MAP on
average. As we discussed before, social stream data is much more
complex than traditional recommender system data (in various CF
scenarios). Users may interact with certain updates because their
senders are famous people or because the type of updates (e.g.,
news or twitter updates) is of a particular interest. Thus, tensor
factorization can model multi-way relationships better than matrix
factorization models them via a decomposition to multiple two-way
relationships. Indeed, bias terms of recipients and senders in LBM
might capture the basic relationship between them and a matrix fac-
torization does not provide any additional benefits. Furthermore,
we have already discussed why we do not employ the user-item

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ζ value

M
A

P

BL

LBM

MF

TF

MF2

TF2

0 20 40 60 80 100 120 140 160 180 200

0.2

0.3

0.4

0.5

0.6

of Dimensions

M
A

P

MF

TF

MF2

TF3

Figure 4: Parameter Sensitivity Analysis: 1) the effect of ζ (top)

and 2) # of dimensions in latent factor models (bottom).

Training/Testing LBM MF MF2 TF TF2

4_01(Tr.)/4_08(Te.) 0.6169 0.6033 0.6151 0.6358 0.6532

4_08(Tr.)/4_15(Te.) 0.6188 0.6168 0.6188 0.6528 0.6641

4_15(Tr.)/4_22(Te.) 0.5897 0.6104 0.6191 0.6014 0.6402

9_01(Tr.)/9_10(Te.) 0.5644 0.5716 0.5723 0.5966 0.6207

9_10(Tr.)/9_18(Te.) 0.5593 0.5621 0.5607 0.5999 0.6183

Table 7: The effects of pair-wise learning. The best perfor-

mance is shown in bold.

matrix in our setting: new items are much more common in social
streams, compared to other recommender system setups. Thus, it
is very interesting to see that well-established matrix-based factor
models do not work equally well on social streams as they do in
traditional CF scenarios. We believe that a more thorough investi-
gation on this issue is desired.

For latent factor models with features, it is noticeable that MF2
failed to outperform LBM again while TF2 has gained additional
2% − 3% absolute improvement over TF consistently. This is a
yet another signal that matrix factorization does not work well in
SSR. For TF2, the increase of MAP can be explained by the two-
level regression structure, that explicit features will help create la-
tent features when new items or new users come into the system,
effectively mitigating the cold-start problem. The performance of
TF2 also validates that regression-based latent factor models are an
effective approach to integrate explicit features with latent features.

We also study the sensitivity of parameters, especially the tem-
poral balance weight ζ and the number of dimensions in latent fac-
tor models. Taking the first week of September as an example, the
effects of both parameters are shown in Figure 4. The first ob-
servation is that both parameters are vital to the final performance
and they are very sensitive if they are out of certain ranges. For ζ,
the optimal performance is achieved when it is around 250 − 300
while for dimensionality, the results suggest that a reasonable num-
ber (20− 50) is the key to success.

5.5 Results on Pairwise Learning
The results demonstrated so far focus on point-wise learning pro-

cedure. In other words, the objective function imposed by models
is still error-based loss function. Here, we focus on how to im-
prove performance by switching the objective function to pairwise
preferences learning. More specifically, we conduct similar exper-
iments as previous ones and report results on LBM, MF, TF MF2

and TF2, shown in Table 7. Other models are omitted due to their
poor performance. First of all, we notice that almost all models
can benefit from pairwise learning, even for the methods which did
not show significant gains in previous experiments, such as MF and
MF2. However, on another perspective, the overall improvement
of a pairwise learning is not huge, usually yielding 1.5% − 2%
improvement on MAP. One possibility is that the pairwise learn-
ing here is still naïve. More sophisticated session enabled learning
procedures (e.g., [31]) are to be investigated in the future.

6. CONCLUSION & FUTURE WORK
In this paper, we investigate the problem of ranking social up-

dates from a unique perspective of LinkedIn, the largest profes-
sional social network in the world. More specifically, we address
the task as an intersection of learning to rank, collaborative filtering
and click-through modeling, leveraging ideas from information re-
trieval and recommender systems. We propose a novel probabilistic
latent factor model with regressions on explicit features, compar-
ing a number of non-trivial baselines and gaining an approximately
10% improvement on MAP over the baseline. In addition to su-
perior performance demonstrated in the paper, we shed some light
on social updates on LinkedIn and how users interact with them,
which might be applicable for social streams in general. For fu-
ture work, it is interesting to see whether it is possible to develop
efficient Bayesian treatment of latent models. In addition, other
models might be explored as we demonstrate that state-of-the-art
CF models do not provide comparable success in SSR. We also
wish to extend our work by considering the diversity of informa-
tion users wish to consume.

Acknowledgements

This material is based upon work supported in part by the National
Science Foundation under Grant Numbers IIS-0545875 and IIS-
0803605.

7. REFERENCES
[1] D. Agarwal and B.-C. Chen. Regression-based latent factor models.

In KDD 2009, pages 19–28.

[2] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida.
Characterizing user behavior in online social networks. In
SIGCOMM 2009, pages 49–62.

[3] C. Borgs, J. T. Chayes, B. Karrer, B. Meeder, R. Ravi, R. Reagans,
and A. Sayedi. Game-theoretic models of information overload in
social networks. In Workshop on Algorithms and Models for the

WebGraph 2010, pages 146–161.

[4] S. Budalakoti and R. Bekkerman. Bimodal invitation-navigation fair
bets model for authority identification in a social network. In WWW

2012, pages 709–718.

[5] B. Cao, D. Shen, K. Wang, and Q. Yang. Clickthrough log analysis
by collaborative ranking. In AAAI 2010.

[6] O. Chapelle and M. Wu. Gradient descent optimization of smoothed
information retrieval metrics. Information Retrieval, 13:216–235,
2010.

[7] J. Chen, R. Nairn, and E. Chi. Speak little and well: recommending
conversations in online social streams. In CHI 2011, pages 217–226.

[8] J. Chen, R. Nairn, L. Nelson, M. Bernstein, and E. Chi. Short and
tweet: experiments on recommending content from information
streams. In CHI 2010, pages 1185–1194.

[9] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An experimental
comparison of click position-bias models. In WSDM 2008, pages
87–94.

[10] M. De Choudhury, S. Counts, and M. Czerwinski. Identifying
relevant social media content: leveraging information diversity and
user cognition. In Hypertext and Hypermedia 2011, pages 161–170.

[11] Y. Duan, L. Jiang, T. Qin, M. Zhou, and H.-Y. Shum. An empirical
study on learning to rank of tweets. In COLING 2010, pages
295–303.

[12] L. Hong, O. Dan, and B. D. Davison. Predicting popular messages in
twitter. In WWW 2011, pages 57–58.

[13] B. Hu, Y. Zhang, W. Chen, G. Wang, and Q. Yang. Characterizing
search intent diversity into click models. In WWW 2011, pages
17–26.

[14] T. Joachims. Optimizing search engines using clickthrough data. In
KDD 2002, pages 133–142.

[15] N. Koenigstein, G. Dror, and Y. Koren. Yahoo! music
recommendations: modeling music ratings with temporal dynamics
and item taxonomy. In RecSys 2011, pages 165–172.

[16] T. G. Kolda and B. W. Bader. Tensor decompositions and
applications. SIAM Review, 51:455–500, August 2009.

[17] Y. Koren. Factor in the neighbors: Scalable and accurate
collaborative filtering. ACM TKDD, 4:1:1–1:24, January 2010.

[18] Y. Koren and J. Sill. OrdRec: an ordinal model for predicting
personalized item rating distributions. In RecSys 2011, pages
117–124.

[19] T.-Y. Liu. Learning to rank for information retrieval. Foundations

and Trends in Information Retrieval, 3(3):225–331, 2009.

[20] S. Muralidharan, L. Rasmussen, D. Patterson, and J.-H. Shin. Hope
for haiti: An analysis of facebook and twitter usage during the
earthquake relief efforts. Public Relations Review, 37(2):175 – 177,
2011.

[21] M. Naaman, J. Boase, and C.-H. Lai. Is it really about me?: message
content in social awareness streams. In CSCW 2010, pages 189–192.

[22] T. Qin, T.-Y. Liu, and H. Li. A general approximation framework for
direct optimization of information retrieval measures. Information

Retrieval, 13:375–397, 2010.

[23] S. Rendle. Factorization machines with libFM. ACM Transactions on

Intelligent Systems and Technology (TIST), 3(3):57:1–57:22, 2012.

[24] S. Rendle, L. Balby Marinho, A. Nanopoulos, and
L. Schmidt-Thieme. Learning optimal ranking with tensor
factorization for tag recommendation. In KDD 2009, pages 727–736.

[25] S. Rendle, C. Freudenthaler, Z. Gantner, and S.-T. Lars. BPR:
Bayesian personalized ranking from implicit feedback. In UAI 2009,
pages 452–461.

[26] S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor
factorization for personalized tag recommendation. In WSDM 2010,
pages 81–90.

[27] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix
factorization using markov chain monte carlo. In ICML 2008, pages
880–887.

[28] A. P. Singh and G. J. Gordon. A unified view of matrix factorization
models. In ECML 2008, pages 358–373.

[29] L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell.
Temporal collaborative filtering with bayesian probabilistic tensor
factorization. In SDM 2010, pages 211–222.

[30] S.-H. Yang, B. Long, A. Smola, N. Sadagopan, Z. Zheng, and
H. Zha. Like like alike: joint friendship and interest propagation in
social networks. In WWW 2011, pages 537–546.

[31] S.-H. Yang, B. Long, A. J. Smola, H. Zha, and Z. Zheng.
Collaborative competitive filtering: learning recommender using
context of user choice. In SIGIR 2011, pages 295–304.

[32] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector
method for optimizing average precision. In SIGIR 2007, pages
271–278.

[33] Y. Zhang, W. Chen, D. Wang, and Q. Yang. User-click modeling for
understanding and predicting search-behavior. In KDD 2011, pages
1388–1396.

[34] M. Zinkevich, A. Smola, M. Weimer, , and L. Li:. Parallelized
stochastic gradient descent. In NIPS 2010, pages 1–9.

	Introduction
	Related Work
	Overview of LinkedIn
	Social Stream Ranking
	Evaluation Metrics
	Dataset
	Linear Models
	Latent Factor Models
	Pairwise Learning
	Summary & Discussion

	Experimental Results
	Experimental Setting
	Models & Features
	Results on Linear Models
	Results on Latent Factor Models
	Results on Pairwise Learning

	Conclusion & Future Work
	References

