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ABSTRACT

Users of popular services like Twitter and Facebook are often si-
multaneously overwhelmed with the amount of information deliv-
ered via their social connections and miss out on much content that
they might have liked to see, even though it was distributed outside
of their social circle. Both issues serve as difficulties to the users
and drawbacks to the services.

Social media service providers can benefit from understanding
user interests and how they interact with the service, potentially
predicting their behaviors in the future. In this paper, we address
the problem of simultaneously predicting user decisions and mod-
eling users’ interests in social media by analyzing rich information
gathered from Twitter. The task differs from conventional recom-
mender systems as the cold-start problem is ubiquitous, and rich
features, including textual content, need to be considered. We build
predictive models for user decisions in Twitter by proposing Co-
Factorization Machines (CoFM), an extension of a state-of-the-art
recommendation model, to handle multiple aspects of the dataset
at the same time. Additionally, we discuss and compare ranking-
based loss functions in the context of recommender systems, pro-
viding the first view of how they vary from each other and perform
in real tasks. We explore an extensive set of features and conduct
experiments on a real-world dataset, concluding that CoFM with
ranking-based loss functions is superior to state-of-the-art methods
and yields interpretable latent factors.

Categories and Subject Descriptors: H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval; H.4 [Infor-
mation Systems Applications]: Miscellaneous

Keywords: Latent Factor Models; Recommender Systems; Col-
laborative Filtering; Twitter

1. INTRODUCTION

In the current online social media ecosystem, users are able to
connect and communicate with each other utilizing rich multimedia
content, including text, images, video, and audio. These commu-
nication streams allow users to be informed instantly of the latest
updates from their social connections. As a result, the aggregated
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social content has become a powerful tool for monitoring critical
information in various situations, such as natural disasters and po-
litical upheavals.

Although services like Twitter and Facebook provide platforms
for users to obtain fresh information, two issues prevent them from
being sufficiently relevant, causing deterioration of user experience
and engagement. First of all, when facing a large amount of content
from their social connections, users simply cannot consume it in an
effective and efficient way, leading to the problem of information
overload. On the other hand, information for a user is usually lim-
ited in scope to the user’s social connections. Thus, it is difficult
for a user to obtain information distributed outside of their circle,
even though it might match their interests, leading to the problem
of information shortage. Users may spend a significant amount of
time filtering and searching for relevant information in social me-
dia. From the perspective of service providers, it is also very im-
portant to understand how users interact with the systems through a
variety of actions such as re-posting (retweets), replying and com-
menting. It is also indispensable to track what in which users are
interested, induced from the content requested and generated by
them. Therefore, social media services can filter and recommend
content to users based on their the history of previous interactions
and interests.

The task of understanding users’ behaviors and their interests
has a number of challenges. First, although the number of items
(updates, tweets, etc.) generated by users in such services may be
huge, few of them impact a particular user, making the interaction
data sparse. Second, new users and new content items flow into the
system continuously. Thus, the “cold start” problem tends to be se-
vere in these social platforms, compared to traditional information
systems. In addition, a tremendous amount of content is rich yet
noisy. Simple information retrieval or topical modeling techniques
may not be sufficient to capture users’ interests.

The problem tackled in this paper has strong links to research
in recommender systems and collaborative filtering. From the per-
spective of recommender systems, the task can be cast as building
a list of relevant content items to users based their social connec-
tions and interests. Thus, many collaborative filtering techniques
are applicable to the task. However, on the other hand, as we men-
tioned, social content systems are much more dynamic than tradi-
tional recommender systems: many new items are pushed into the
system every second. Therefore, recommender systems need to be
adapted to this novel situation.

State-of-the-art collaborative filtering models are based on latent
factor models (LFM), partially due to their superior performance
in the Netflix competition [17]. However, the basic assumption
for standard LFM is to exploit a user-item interaction matrix and
cannot handle arbitrary features easily. Although some of newly



proposed frameworks such as [1, 7], based on LFM, can consider
features, fundamental modeling assumptions prevent them from
handling high-order interaction data (e.g., tensors). In addition,
current extensions to LEM [2, 25, 28] which incorporate rich text
information are usually cumbersome, requiring complicated infer-
ence algorithms which cannot scale to large datasets. Moreover,
researchers in collaborative filtering are realizing that pointwise-
based measurement may no longer be appropriate and so a handful
of ranking-based metrics are proposed. However, no work to date
has compared them systematically on real world datasets.

In this work, we study the problem of modeling users’ behaviors
by focusing on one particular decisions, retweets, in Twitter and try
to understand users’ interests. Our method can be easily extended
to model multiple types of users’ decisions as well. We use a state-
of-the-art recommendation model, Factorization Machines FM [22],
to model user decisions and user-generated content simultaneously.
Our contributions can be summarized as follows:

e We propose Co-Factorization Machines (CoFM), which deal
with two (multiple) aspects of the dataset where each aspect
is a separate FM. This type of model can easily predict user
decisions while modeling user interests through content at
the same time.

e We apply Factorization Machines to text data with con-
straints. Thus, the resulting method can mimic state-of-the-
art topic models and yet benefit from the efficiency of a sim-
pler form of modeling.

e For user decision modeling, we compare a number of
ranking-based loss functions. We introduce the newly pro-
posed WARP loss [26], which has been successfully applied
in text and image retrieval tasks (e.g., [31, 32]), into the con-
text of recommendation.

e We apply our proposed methods to the problem of modeling
personal decision making in Twitter and explore a wide range
of features, revealing which types of features contribute to
the predictive modeling and how content features help with
the prediction.

‘We next review several directions of related work. In Section 3, we
review FM: its basic settings and learning procedure. In Section 4,
we formalize CoFM with different strategies of shared latent fea-
tures. In Section 5, we compare and discuss a variety of loss func-
tions. In Section 6, we describe features used in our model. In Sec-
tion 7, we report the experiments with the discussions of datasets
and baselines used. We conclude the paper in Section 8.

2. RELATED WORK

In this section, we review three lines of relevant research work:
1) collaborative filtering and ranking, 2) collaborative filtering with
content integration, and 3) Twitter user and content modeling. We
link them with our tasks and discuss the novelty of our work as
well.

Recommender systems which utilize LFM have gained signifi-
cant attention because they were used by the winning team of the
Netflix Prize. However, simple LFM cannot easily be coupled with
additional information (features) in other recommendation scenar-
ios. Recently, researchers have explored how traditional LEM can
be enhanced by exploiting rich features generated by users. Three
main paradigms are proposed for this purpose. The first paradigm
is “Regression Based Factor Models” (RBFM) and its extensions,
proposed by Agarwal, Chen and colleagues [1, 2, 3, 36], which
have been successfully used in a variety of recommendation sce-
narios, such as social networks [33, 34], professional networks and

content recommendation. The basic idea behind RBFM is to re-
place zero-mean Gaussian distributions usually used in a simple
LFM with regression-based means. Thus, RBFM adds another layer
of regression on top of LEM, which can incorporate different types
of features effectively. However, RBFM can only handle 2-order
data interactions and thus high-order data structures (e.g., tensors)
cannot be modeled. In addition, the proposed method, training
with Monte Carlo EM, is inefficient and cannot scale to large scale
datasets easily. The second paradigm is called “Factorization Ma-
chines” (FM), proposed by Rendle et al. [22]. FM can handle, in
theory, arbitrary orders of interactions between variables and natu-
rally deal with features. However, the existing formalism of FM has
not been explored with topical modeling of content and pairwise
preferences learning has not been discussed in the context of FM.
The last paradigm is called “Feature-based matrix factorization”
(FBMF), proposed by Chen et al. [7], which is to combine LEM
with linear regression. As noted by Rendle [22], similar to RBFM,
FBMF cannot handle high-order interactions either. Additionally,
FBMF can be viewed as a special case of FM.

Traditional collaborative filtering methods are trained and eval-
uated on pointwise-based measures, such as Root-Mean-Square-
Error (RMSE) and Mean-Square-Error (MSE), essentially measur-
ing how accurate each single prediction is, regardless of how items
are presented to users. Although the use of RMSE gained popular-
ity through the Netflix prize competition, ranking-based measures
might be more appropriate than pointwise-based measures since
users are presented a ranked list of items calculated by recommen-
dation systems. Thus, it would be more natural to optimize the
ranked list directly. Some recent advances in recommender sys-
tems lie in this direction. For instance, Weimer et al. [29] extended
the maximum margin matrix factorization method (MMMF) by opti-
mizing a surrogate loss function approximating the NDCG ranking
measure, a ranking-based metric commonly used in the Information
Retrieval (IR) community. However, the method proposed in the
paper is complicated and arguably hard to scale to large datasets.
A margin ranking criterion, an ordinal loss, is introduced from the
field of IR to collaborative filtering by Weimer et al. [30] in the
context of MMMF, which is a direct extension of the hinge loss for
Support Vector Machines. This max-margin loss essentially min-
imizes AUC, which is the area under the ROC curve [4, 31]. A
smooth version of hinge loss which is also to minimize AUC, called
Bayesian personalized ranking, is proposed by Rendle et al. [23]
and has yielded superior performance in tag recommendation. Re-
cently, Balakrishnan and Chopra [5] proposed a two-stage proce-
dure for collaborative ranking. Their proposal is to first train a
matrix factorization model for users and items and treat latent fac-
tors as features to feed into a standard learning-to-rank framework.
Koren and Sill [18] proposed a method to embed ordinal regression
into matrix factorization by predicting a full distribution over all
ranks. An interesting point is that this method is indeed a point-
wise method. With a slightly different approach, Yang et al. [34]
studied user behaviors when browsing a list of items. The pro-
posed framework includes two loss functions that are comparable
to multinomial logic model and a margin ranking criterion but have
more intuitive explanations. Though different ranking-based loss
are proposed, they are never compared.

Some recent developments in collaborative filtering have demon-
strated the power to integrate rich content from articles and scien-
tific papers with user decisions to provide better recommendation
results. For instance, Agarwal and Chen [2] extended RBFM with
a latent Dirichlet allocation prior for latent factor models. A sim-
ilar approach was investigated by Shan and Banerjee [25] as well.
Wang and Blei [28] proposed a method to combine matrix factor-



ization with probabilistic topic modeling for recommending scien-
tific papers. The method cannot easily leverage additional features.
One significant advantage of these joint modeling methods is that
latent factors obtained through content modeling can reveal inter-
pretable meanings to latent spaces and thus provide a unique way
to uncover some hidden structures of the data. However, all these
methods require complicated inference algorithms which are not
easily to scale to large datasets.

Recommender systems have been built specifically for Twitter.
For instance, Kim and Shim [16] argued that Twitter does not of-
fer to find the most interesting tweet messages for users. The au-
thors proposed a probabilistic model derived from Probabilistic La-
tent Semantic Analysis (PLSA) for collaborative filtering to rec-
ommend potential followers to users in Twitter. The method does
not consider any explicit features at all. Due to the fact that Twit-
ter users form a information network, researchers have tried to use
undirected graphical models to model such networks. For example,
Yang et al. [35] used a factor graph to model the spread of tweets.
Lin et al. [20] proposed a generic joint inference framework for
topic diffusion and evolution in social network communities based
on Gaussian Random Fields, which also cannot integrate with rich
features. Similarly, Peng et al. [21] proposed a method based on
Conditional Random Fields (CRF) to predict how likely a tweet
will be retweeted by a user. The proposed method suffered from
the difficulty to efficiently perform inference on graph-like CRFs.
Duan et al. [9] studied how learning to rank approaches can be used
in ranking tweets. They explored a number of features and used 20
query terms as input to train a RankSVM as the model. In the
present work, we do not have explicit queries while modeling user
decisions and user-generated content. Hong et al. [14] and Uysal
and Croft [27] trained classifiers to predict whether a tweet will
be retweeted. However, the classifiers they trained are universal
for all users and hence cannot provide personalized results. Re-
cently, Chen et al. [6] utilized FBMF with a wide range of features
to recommend tweets for users on Twitter. However, the proposed
method cannot provide much insight on how content contributes to
users’ decisions and only one type of ranking loss function is used
without comparisons. In all, these methods either do not handle ar-
bitrary features or do not obtain summarized content (topics) from
Twitter messages, preventing us from further understanding how
users’ decisions are made. In this work, we will perform these two
tasks simultaneously.

3. MODELING TWITTER BY FM

In this section, we first review the basic settings of FM with a
discussion of how it can be used for different types of responses.
Then, we detail how FM can fit into the task of modeling Twitter
data, which is a predictive modeling for user responses and a topic
coding model for content.

3.1 Factorization Machines

Here we briefly review FM, a state-of-the-art framework for
latent factor models with rich features. For a detailed descrip-
tion, please refer to Rendle [22]. We start from a design matrix
X € RP*F, where the ith row x; € RY denotes one data instance
with P real-valued variables and where y; is a response for the data
instance. We use s; to represent our estimation of y; based on x;.
In many tasks, the goal is to make the discrepancy between s; and
y; as small as possible. The factorization machine (FM) model of

order d = 2 for f(y; | xi, ®) = s; can be defined as:

P P P K
si=Po+ Y Bxi+Y, > XXy 0,105k (1)
j=1 k=1

i=1j'=j+1

where k is the dimensionality of the factorization and the model
parameters ® = {fBo, 3,0} are: Bo € R, B € R and
0 ¢ RP*X_ The form of FM (Equation 1) is very general
and can be used in many applications. In order to cope with
different tasks, we can define an exponential family distribution
over P(y;|s;) similar to that utilized in [19], as P(yi|si) =

h(ys, ®) exp [77()\; s)TT(y:) — A(n()\; sl))] where ) is the nat-

ural parameter of the family. For instance:

e Gaussian response: For normal rating prediction problems,
y; can be treated as a real-valued response drawn from a
Gaussian distribution. Thus, we scale s; with a known vari-
ance. 1 = s;/0°, A = s7/20%° = o’n?/2 and h =
\/2177 exp(— 52z y;) where o is the variance. Thus, the ex-
pectation E[T'(y)] = s.

e Poisson response: For word counts, y; can be treated as the
indicator of word index, drawn from a Poisson distribution.
Thus, n = s;, A = exp(s;) and h = y%, The expectation
E[T(y)] = exp(s) = .

e Binary (Bernoulli) response: For binary decisions, y; is
usually treated as O or 1. Thus, n = s;, A = log(1l +

exp(s;)). The expectation E[T'(y)] = %ﬁf&).

One important aspect of FM is that the model can mimic the struc-
ture of many state-of-the-art models like matrix factorization, pair-
wise interaction tensor factorization, SVD++ and neighborhood
models in one unified framework, as demonstrated by Rendle [22].

FM can be learned in several ways, including maximum a pos-
teriori (MAP) estimation and Bayesian inference. In this paper,
we stick to MAP learning, which is to maximize the log likeli-
hood through stochastic gradient descent (SGD) or alternating least
squares. An equivalent view is to minimize a loss between the
reconstructed response f(y; | xs, ®) and the true response y; as
argmine y_, [(f(yi | xi, ©),y:) + R(O) where [ is a certain loss
function and R is a regularization term for ®.

3.2 Modeling User Decisions and Content

In this paper, we focus on extending FM to model Twitter data.
We have two goals to achieve for understanding and modeling user
behaviors in Twitter. First, we wish to uncover what kind of items
with which users interact through various actions (e.g., retweets,
replies and favorites) and what features contribute to the mecha-
nism that causes certain pieces of information to be shared across
social connections. Second, content is of great importance in Twit-
ter and thus it is vital to discover topics in which users are interested
and how these topics influence users’ decisions. As mentioned ear-
lier, we wish to predict users’ decisions as accurately as possible
while discerning topics from the huge amount of user-generated
content at the same time.

For the first task, we focus on a binary response yq for each
tweet d: whether the tweet will be retweeted by a target user ul®,
We use u'® denote the author of the current tweet d. For each
tweet, we use X4 to represent a list of explicit features for tweet d,
which might include features about u® and u(*, and 84 to repre-
sent a list of latent features (factors) discovered through modeling.
For the purpose of discussion, we compose a simple feature vector
consisting of one categorical feature to indicate its author and one
categorical feature to indicate the index of the tweet. Following



the definition of FM (Equation 1), we can have an estimation of yq
based on xq4 and 04 as f(sq | xa,04q):

8d = o+ B, +Bg+ < 0,04 > (2)

This is the exact form of traditional matrix factorization for collab-
orative filtering where the 6 are treated as latent factors for users
and items (tweets). Since yq is a binary response, we can also have

a binary version as yq ~ Bernoulli (6 (sd)) where ¢ is the sigmoid

function. For user decisions y, one natural criteria for a reasonable
model is to predict them as accurately as possible by specifying
some error based loss functions (e.g., squared error loss). Alter-
natively, we can provide a ranked list of items for each user and
measure how well these ranked lists approximate user actions. The
latter view goes beyond pointwise evaluation and learning process
for recommendation systems and has been studied extensively re-
cently (e.g., [17, 34]). Later, we will further explore this idea.

For the second task, we will model terms in each tweet d. We
denote sg4, to represent our estimation of the raw word count of
term v in tweet d, w4, wWhich is the response in this task. The vec-
tor x4; is used to represent features of term ¢ in tweet d. In order
to explain things more clearly, we change 3 for s4, to « and la-
tent factors to ¢p. We use two simple indicator features here. More
specifically, for each sq,, we associate one categorical feature to
indicate the term index and another one to indicate the tweet in-
dex. Following a similar argument, s4,, is a function of all features

T (8av [ Xdv, Pap):
SdU:a()+ad+au+<¢u,¢d> (3)

The inner product between ¢, and ¢, is of interest. For ¢, it is
a K -dimensional vector and it can be treated as code for tweet d,
playing a similar role as P(z|#) in traditional topic models like
probabilistic latent semantic analysis (PLSA) or latent Dirichlet al-
location (LDA). The only difference is that ¢, is not constrained to
rest on the simplex. For ¢,,, it is a K-dimensional vector for term
v and it can be treated as a P(z|v). Using ¢, for all terms, we
construct the following matrix:

M e RV where M., = ¢

v

where each column of M is set to ¢,. Therefore, each row of
M can be treated as P(v | z) without normalization. In order to
recover a similar modeling power from topic models, we add the
following constraints to the parameters:

> ¢y, =1forallk, ¢, >0; and, ¢y, >0

Thus, we have a normalized matrix M, resembling a conventional
topic matrix. We can further restrict all o to be non-negative, re-
sulting in a non-negative decomposition of the term matrix. In such
a setting, the content modeling behaves like a simpler topic model
than its more complicated counterparts. If we view the terms in a
tweet as count data, we can use the Poisson distribution and thus

have wg; ~ Poisson ( exp(sdi)). On the other hand, since terms

are sparse in tweets where one term will most likely appear only
once in a single tweet, an alternative parametrization is to use the

Bernoulli distribution wq; ~ Bernoulli (6 (sdi)). Note that other

explicit features, which are not discussed here, can be incorporated
into the model easily.

Thus, we can have use FM to model two tasks separately. How-
ever, it might be better if we can jointly model these two aspects
of the data together. In this paper, we propose several methods to
simultaneously perform these two tasks.

4. CO-FACTORIZATION MACHINES

In many application scenarios, we may have multiple views. For
instance, each tweet is associated with two types of important as-
pects to be modeled: 1) user action responses and 2) terms. In
this subsection, we introduce Co-Factorization Machines (CoFM)
to address the problem of modeling multiple aspects of data. Fol-
lowing the setting described in Equation 2 and Equation 3, we have
two separate F'Ms to model two aspects of the same tweet where the
two aspects are not linked together. Notice that we have learned two
different latent representations of the same tweet: 64 and ¢;. Link-
ing two factorization machines might be possible if these two latent
representations of the tweet can be coupled in certain ways. Indeed,
there exist several design choices to combine these two modeling
processes. We present three paradigms below.

4.1 CoFM through shared features

One natural approach to link two latent representations of the
same tweet is to treat one type of latent representation as a set of
features and feed it into another modeling process. More specifi-
cally, we plug ¢, into Equation 2 and have:

sa=Po+ B, +Bat < By, bs >+ <0u,04>
K K
+ Z¢d,k < 9’u70¢d,k > +Z¢d,k < 9d79¢'d,k > (4

k=1 k=1

Here, the third term < Bd,d, ¢, > is a simple regression part by
using latent factors obtained from content. The last two terms are of
interest. Each latent factor in ¢ is re-weighted by the interaction
between its projection to the latent space of € and corresponding
user/tweet latent factors. In other words, the last two terms can be
re-written as:

K K
Z¢d,k <0u,04,, > +Z¢d,k <04,0p,, >=
k=1

k=1 =
< ¢d7wu,¢v >+ < ¢di7wd,¢v >

where w are weights that each element is obtained from the inter-
action between the latent factors 6 and linear mapping vector 6.
This kind of mapping is similar in spirit that used by Gantner et
al. [11]. The same process can be used for w; , as well. If the
shared feature mechanism is indeed a feature re-weighting scheme,
another re-weighting approach might also be possible. Instead of
using 6 ¢ to map each dimension in ¢ to 8, we treat ¢ as the latent
representation of a missing feature wg. The corresponding equa-
tion is:

sq=Po+ B, +0B;+ ﬂw¢w¢,d+ < 64,05 >
+w4> <9u7¢d>+w¢' <0d7¢d> (5)

Under this formalism, wg is a missing feature and can be treated
as weights for interactions between @ and ¢. Comparing Equation
5 and Equation 4, we can see that the second formalism has fewer
parameters to be estimated and more intuitive motivations. In this
paper, we use the second formalism.

4.2 CoFM through shared latent space

The methods introduced in the previous section assume that the
latent representations obtained by different aspects of the model are
different. A simpler approach is to assume that the latent factor of
6, is exactly the same as ¢,. Therefore, some parts of the latent
factors of the same tweet are shared across different aspects. If we
use 7 to indicate the shared latent factors, the two aspects under



this formalism are as follows:

Sd:50+ﬁu+ﬁd+ < eu,nd >
Sdo =00+ og + ot < @, My > (6)

This formalism shares the idea of matrix co-factorization used in
relational learning scenarios.

This approach would be convenient when multiple factors will be
shared. For instance, for each term, we can add one more categor-
ical feature to indicate the author of the tweet and therefore obtain
a latent representation of its author through content modeling:

sa = o+ B, + Bgt+ <n,,ng >
S =00 +og+ oy ot < @,,n; >+ < @,,n, >
+ < M,,MNg >

where the factors for user v and tweet d are shared in two aspects.

4.3 CoFM via latent space regularization

The discussions in Sections 4.1 and 4.2 represent two variations
of how to work with two latent representations of the tweet. One
can regularize two such representations such that they do not reside
too far away from each other. A simple approach is to impose the
following regularization on the model:

Ag.0lld, — OallF

where Ay 6 is a regularization parameter. Under this assumption,
we can also view that one latent factor is drawn from the multivari-
ate normal distribution with the mean as another latent factor:

Gq ~ MVN(64, A5 o)

This will recover the formalism from Wang and Blei [28]. An ad-
ditional possibility is suggested in Agarwal and Chen [3] where a
“global” representation is assumed. The “local” representation is
drawn from the “global” representation by a multivariate normal
distribution. Thus, a third latent representation will be introduced
if this approach is used.

5. LEARNING WITH COFM

In this section we formalize the FM learning problem in an opti-
mization framework. The discrepancy between the estimation s; by
FM/CoFM and the true value y; can be measured by loss functions.
Different choices of loss functions may lead to significant changes
in performance as we will see in the experiments. Traditionally,
pointwise error-based loss functions are widely used in latent fac-
tor models, which are widely used in recommender systems. Here,
we discuss how different loss functions fit into the FM/CoFM frame-
work and how the overall learning algorithm proceeds.

5.1 Optimization with content

For the task of modeling content in Twitter, two possible loss
functions come from two assumptions (Poisson or Bernoulli distri-
butions). We have the following optimization task:

D Vv
Opt(C) = arg gngz Zlc(wdv, f(Sdv | Xdv, o, ®))

d=1v=1
Py Py
2 2
+D @ + > AelldslIE
j=1 j=1

stia >0, ¢, > 0,Vk,v; ¢, €P,Vk € K; by > 0,Vd, k
@)

where P; is the number of features used for each term v in each

tweet d and P is a (K — 1)-simplex. We consider the following
loss functions for this task:

e Log Poisson loss: I“F (way, S40) = —Waw 10g Sav + Sao-
Minimizing this loss is actually equivalent to minimizing an
unnormalized KL-divergence between observed counts wq,
and their reconstructions sg, .

e Logistic loss: lLG(de,sdv) = log[l + exp(—wavSdv)]-
Minimizing this loss is essentially performing logistic regres-
sion. Here, we only consider on/off of a term v in tweet d,
dismissing its possible multiple occurrences.

The optimization problem in Equation 7 can be efficiently solved
according to two facts: 1) Due to the property of multilinearilty
[22], the model is linear with respect to each model parameter when
others are fixed and, 2) Proposition 1 in [37] states that the optimal
value of a single parameter when other are fixed is the maximum
between zero and the value obtained by a non-constrained version
of the same problem. Also, efficient methods (e.g., [10]) exist to
project real-valued vectors onto the simplex. Therefore, this opti-
mization problem is solvable.

5.2 Optimization with user decisions

For modeling user decisions, we also formalize the problem as
an optimization problem as follows:

D

Opt(U) = arg min > w(ya, f(sa|xa, 8,0))
T d=1

Py Py
) X885+ D Xe 11051 ®)

j=1 Jj=1

where P is the number of features used for each tweet d. Unlike
content modeling, no constraints are put onto the parameter space.
For pointwise loss functions, we consider:

e Squared error loss: ls(yd, 54) = (ya — s4)?, which is for
regression problems with Gaussian responses.

o Logistic loss: [, the same as the loss used in modeling
content.

e Huber loss:

1 B 5
1" (ya, sa) = {% max(0,1 — yasa)”if yasa > 0

5 — YdSd otherwise

This is the one-sided variant of Huber’s robust loss function.
It is convex and continuously differentiable. The loss is men-
tioned in Yang et al. [33].

It has been demonstrated that pointwise loss functions may not
be appropriate for recommender tasks when users choose items
from a list of items prepared by the system [8]. In such cases, we
wish to adopt more advanced loss functions which consider pair-
wise preferences. For each target user u, we can construct a set
of tweets which are originated by other users and retweeted by u,
denoted as C;/. Note that these tweets could be originated by u’s
friends or any other users who are not connected to u. On the con-
trary, we denote all other tweets from u’s friends which are not
retweeted by u as C, . Therefore, for each user u, there exists a
huge set of tweets which are outside of w’s network and are treated
as unknown and not considered in the following loss functions. In
this work, we focus on pairwise loss functions:

Margin ranking criterion (MRC):

Ma,e)= > > max[0,1— f(z1) + f(x2)]

1 €CT zoeCy



which considers all pairs of positive and negative labels, and as-
signs each a cost if the negative label is larger or within a “margin”
of 1 from the positive label. Optimizing this loss is similar to opti-
mizing the area under the curve of the receiver operating character-
istic curve. That is, all pairwise violations are considered equally if
they have the same margin violation, independent of their position
in the list. For this reason the margin ranking loss might not opti-
mize precision at k very accurately. This loss function is proposed
in Herbrich et al. [12] and used in many IR tasks (e.g., [15, 4]).

Bayesian personalized ranking (BPR):

Pa,me) = Y Y —logld(f(z1) — f(2))]

1 €CT zoeCy

where § is a sigmoid function. This loss is proposed in Rendle
et al. [23] and has been used in tag recommendation (e.g., [24])
and yielded superior performance. This can be viewed as a smooth
version of MRC.

Weighted Approximately Ranked Pairwise loss (WARP): This
loss, proposed in Usunier et al. [26], has been successfully applied
in image retrieval tasks [31] and IR tasks [32]. Here, we discuss its
application in recommender systems. The idea of WARP is to focus
more on the top of the ranked list where the top k positions are
those we care about, comparing to MRC and BPR where no notion
of ranked list is introduced. By using the precision at £ measure,
one can weigh the pairwise violations depending on their position
in the ranked list. WARP is defined as an error function as follows:

SITWARP = Z Lirank(f(x:))] ©)

X EC;r

where rank(f(x;)) is the rank of a positive labeled instance x; €
Ct given by rank(f(x;)) = Doecs I[f(x") > f(x;)] where
I(x) is the indicator function, and L(-) transforms this rank into
aloss: L(r) = >7_, 7j,with 1 > 72 > --- > 0. The idea
of the rank function is to compute the violations where negative
instances are ranked higher than the positive ones and the L func-
tion is to transform violations into a loss. Different choices of
define different importance of the relative position of the positive
examples in the ranked list. In particular:

e For 7; = 1 for all ¢ we have the same AUC optimization as
margin ranking criterion.

e For 7y = 1 and 7;~1 = 0 the precision at 1 is optimized.

e For 7j<; = 1 and 74>, = O the precision at k is optimized.

e For 7; = 1/i a smooth weighting over positions is given,
where most weight is given to the top position, with rapidly
decaying weight for lower positions. This is useful when
one wants to optimize precision at k for a variety of different
values of k at once.

In this work, we use 7; = 1/7. It is difficult to directly optimize
WARP due to the discrete nature of indicator functions. In addition,
since the number of negative instances is significantly larger than
positive instances, the rank function is inefficient to be calculated.
Before we tackle these issues, the form of Equation 9 can be readily
re-written as (see [31] for details):

Llrank(f(xi)] X ce- LUF(x') > f(xi)]
rank(f(x;))

CI'TWARP = Z

X EC;{

with the convention 0/0 = 0 when the correct label y is top-ranked.
We replace the indicator function by using the margin function
max(0,1 — f(x:;) + f(x)). In order to approximate the rank
function, for a given positive instance, one draws negative instances

until the one which violates the indicator function. Thus, we ap-

proximate rank(f(x;)) by using {D;\FlJ where || is the floor

function, D™ is the number of items in C,, and N is the number of
trials of sampling until a violating pair is found. The approxima-
tion only requires local knowledge of negative instances, making it
easily to be calculated per user for our case.

Competitive softmax loss (SOF TMAX):

exp(f(si|xi))
>, exp(f(si|xi))

This loss is introduced by Yang et al. [34] and is motivated by the
idea that users are presented a list of items and they choose items
based on the “utility” they will receive if the item is chosen. Here,
we assume that the utility for item ¢ consists of two components
si + e; where s; encodes the intrinsic interest of the item to the tar-
get user and e; is a stochastic error term reflecting the uncertainty
and complexity of the choice process. We choose s; to be the out-
come from the predictive model (e.g., FM, CoFM). If the error term
e; is independently and identically distributed as a Weibull distri-
bution, the probability item ¢ is chosen is exactly as Equation 10,
which is essentially a multinomial logic model.

Ply: = 1]C.) =

forall x; € C,,  (10)

Competitive hinge loss (HINGE): Following a similar assump-
tion that a user chooses items based on their utilities, we can for-
malize the problem of distinguishing positive instances from neg-
ative ones as a problem of classification. Therefore, the key idea
of HINGE loss is that the utility difference between a positive item
and negative items would be greater than random errors, namely:

Wy == 1) f(si|xi) > 5=

With this spirit, a pairwise preference learning problem can be for-
malized as follows:

e
" =min ) &
t=1
1
st f(se|xe) — ﬁ Z f(si|x:) >1—&and& > 0,

X;E€Cy
Vx¢ € C;r

where £ are introduced parameters to be optimized. This loss re-
flects the insight that user decisions are usually made by comparing
alternatives and considering the differences in potential utilities. In
other words, the marginal utility between user choice and the av-
erage of non-choices is maximized. This loss is also introduced in
Yang et al. [34].

All of these ranking-based loss functions were proposed in
different contexts and never compared in recommender systems.
From the discussion above, it is clear that WARP is the only loss
function considering the relative positions between positive in-
stances. Meanwhile, both SOFTMAX and HINGE consider the set
of positive and negative instances as a whole, rather than MRC and
BPR only deal with pairwise preferences. In addition to what has
been discussed here, other ranking based loss measures are also
proposed. For instance, Koren and Sill proposed the OrdRec ap-
proach [18], which is based on a pointwise ordinal model. The
idea of OrdRec is to predict a full probability distribution of the
expected item ratings, rather than only a single score for an item.
However, this is not desirable in our setting in that we only care
about relevant items ranked at the top. Thus, it is not necessary
(and even impossible in practice) to predict a full distribution over



Algorithm 1: The sketch of the algorithm to optimize Equation
11. This is one iteration over the whole dataset.
foru = 1to |U| do
Optimize Opt(U) for 04, 0., and 3:
Perform stochastic gradient descent for pointwise loss
functions or rank-based loss functions.
Optimize Opt(C) for ¢, and o
Perform stochastic gradient descent for log-Poisson
loss or logistic loss
Optimize Opt(C) for M
Perform gradient descent to obtain the current optimal
value for the topic matrix

all positions. Other researchers have tried to optimize NDCG di-
rectly. However, this is either done by approximation [29] or by a
two-stage approach [5], which might be sub-optimal.

5.3 Summary

Putting things together, a CoFM framework for learning a model
for user decisions and content understanding can be formalized as:

Opt(CoFM) : Opt(U) + rOpt(C) (11)

where 7 is a parameter to balance two objective functions. By
choosing different coupling strategies introduced in Section 4 and
different loss functions, Opt(CoFM) can effectively perform pre-
dictive modeling and maximum likelihood estimation of content at
the same time. We adopt a hybrid of SGD and coordinate descent
to optimize Equation 11, which is sketched in Algorithm 1. We
iterate the whole dataset by performing SGD for predictive model-
ing and content modeling while fixing the topic matrix. After one
iteration, we optimize the topic matrix by gradient descent. Since
we restrict M € P, an efficient method [10] can achieve this task.

6. FEATURES

Here we discuss the features used in our models. These features
utilize the content of tweets that users have generated. All of these
features try to capture users’ interests. Features are divided into
five groups: 1) categorical features, 2) content features, 3) local
graph features, 4) user features, and 5) temporal features, where
each group has multiple features.

Categorical Features: The key idea of FM/CoFM is to use both
indicator features and explicit features together to obtain competi-
tive performance in predictive tasks. For modeling user decisions,
we use three categorical features: 1) target user id, 2) neighbor user
id and 3) the tweet id. For content modeling, we use the term id
and the tweet id as features.

Content Features: For “content profiles” we utilize features to
characterize what users have posted and what their friends have
posted. For each tweet ¢, let w; be the term vector for this tweet.
Let u(%) be the author of the tweet . For user u, we construct three
user profiles as follows:

e Content Profile: Let CP(u) = Y2 Tu(i) == u]w;.
This is essentially the concatenation of all term vectors gen-
erated by user u.

e Neighborhood Profile: Let NP(u) = 37,y (, C(u)
where N (u) is a set of friend users of user .

e Retweet Profile: Let RP(u) = .7 Tu(i) == u A
r(i) == 1]w; where r(7) is a binary indicator for whether
tweet 4 is a retweet or not.

These profile features will capture the interests of users at a fine-
grained level. One drawback of these features is that they capture
the long-term interests of users. For new tweets, they remain the
same and would be less discriminative. Thus, we introduce the sec-
ond group of features, characterizing how relevant a new tweet is
against user profiles. Let R(w1, wz) be a relevance measurement
between term vector w1 and wa. Thus, we have the following rel-
evance scores:

e Content Relevance: R(w;, CP(u)), measuring the similar-
ity of the incoming tweet to the user’s content profile.

e Neighborhood Relevance: R(w;, NP(u)), measuring the
similarity of the incoming tweet to the user’s neighborhood
profile.

e Retweet Relevance: R(w;, RP(u)), measuring the similar-
ity of the incoming tweet to the user’s retweet profile.

We use dot product as the relevance measure although many other
IR relevance scores could also apply. Both “content profiles” and
“relevance scores” utilize term level information to determine the
features. In addition to these features directly related to the content
generated by the users, other meta information also might be useful:

e Length of Tweet: Number of characters used in tweet 4.

e Hash Tag Count: Number of hash tags used in tweet <.

e Hash Tag History: How many times the hash tag appears in
u(i)’s retweets.

e URL Count: The number of URLSs used in tweet 4.

e URL Domain History: How many times the URL domain
appears in u()’s retweets.

o Retweet Count: The number of times tweet ¢ has been
retweeted so far.

Local Graph & User Features: These features potentially char-
acterize how popular and how well connected a user is. Intuitively,
a popular user who has many friends and followers can be actively
passing information by retweeting messages.

e Mention Count: The number of times user u is mentioned
in other tweets.

e Friend Count: The number of friends user u follows.

e Follower Count: The number of followers user u has.

e Status Count: The number of tweets user « has published.

e Account Age: Number of years user v appeared on Twitter.
User Relationship Features: Relation features refer to those

features which represent the relationship between a target user u;

and his/her friend u;.

e Co-Friends Score: This feature estimates the similarity of
friend sets of the target user u; and his/her friend u;.
Co-Follow Score: This feature estimates the similarity of
follower sets of the target user u; and his/her friend ;.

e Mention Score: The number of times u; mentions ;.
Retweet Score: The number of times u; retweets u;.

e Mutual Friend: Whether u; and u; are mutual friends.

The similarity measure used is the Jaccard coefficient.

Temporal Features: We estimate user w’s activity level at time
t as hy(t), which is calculated by the average number of tweets
he/she published in a periodical time slot, e.g., every Monday. With
the estimated response time At, the number of accumulated tweets
can be written as: ru(At) = 3., ::+At h;(t) dt, as pro-
posed by Peng et al. [21]. We calculate both activities using period
of a day and a week.

In our case, all features are pre-calculated through a Hadoop
cluster and can be processed efficiently.
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Figure 1: The sparsity of retweets per user.

7. EXPERIMENTS

To prepare our dataset, we first monitored the Twitter public
stream for one month in June 2012 and extracted users who post
at least ten tweets including at least one retweet during this time
period, resulting in 765,386 target users with approximately 11M
tweets. For all these target users, we 1) crawled all their historical
posts and 2) traced who they retweeted from and crawled all their
posts as well. In this fashion, we obtained 4,327,816 neighbor users
with 27M tweets, resulting in a dataset that is significantly larger
than any previous work for similar tasks. For each target user u,
we treat all tweets from his/her neighbor users as incoming tweets.
If a tweet d from incoming tweets are retweeted by user u, d is
treated as a positive instance, and negative otherwise. We plot the
unnormalized distribution of number of retweets per user in Figure
1, demonstrating that a great number of users only retweet a limited
number of times while some users retweet thousands of times.

We adopt rank-based metrics to evaluate the effective-
ness of different models. =~ We borrow Mean Average Pre-
cision (MAP) from the IR community. We define “preci-
sion” at position k (Precision@k) of all incoming items for
a particular user as (# of retweets in top positions)/k.  Then
an average measure across all top m positions (Average
Precision) for user w is defined as (), , Precision@k X
I )/ (# of retweets for ranked list of user u) where I, is a binary in-
dicator whether the position k has been retweeted or not and m is
the total number of positions evaluated. Note that Average Pre-
cision is evaluated per user. We can average it across all users,
resulting in the MAP measure, as used similarly in [6, 13].

In order to mimic a realistic evaluation environment, we adopt a
time-based evaluation process, significantly differing from Chen et
al. [6] where a fixed ratio of training vs. testing dataset is used. (It
is not clear whether the ratio is kept according to the time order.)
In addition, we do not use cross validation as it violates the time
order of data, yielding unfair advantages to certain models. Here,
for each user, we split all incoming tweets into n consecutive time
periods with equal number of tweets in each time period. We train
models on one time period and test them on the next. This is a
balance between cross validation and online training and testing.
In our experiments, we set n = 5.

We compare several aspects of proposed methods and other
state-of-the-art baselines (some details omitted for space):

e Matrix factorization (MF): Categorical features, the target
user id and the tweet id are used to feed into FM, yielding
a MF model with biases, which is a solid baseline in many
collaborative filtering tasks.

e Matrix factorization with attributes (MF2): In addition to
the categorical features used in MF, we add explicit features
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Figure 2: The comparison of pointwise loss functions.

into the model, which essentially mimic the state-of-the-art
latent factor models with features [1, 33, 7] as mentioned by
Rendle [22].

e Collaborative personalized tweet recommendation
(CPTR): This is the model proposed in [6], which is a
variation of MFA where the item factors for a tweet are
decomposed into term factors and neighboring user fac-
tors. This is a state-of-the-art method for the task. We
re-implement their approach under the framework of FM.

e Factorization machines with attributes (FM2): In contrast
to two categorical features, we add one more categorical
feature, the neighbor user id, into the model, resulting in a
pairwise tensor factorization model with “target user-item-
neighbor user” interactions.

e CoFM with shared features (CoFM-SF): This is the model
introduced in Section 4.1 with the same indicator features as
FMA for user decisions. We use term id and tweet id as two
categorical features for content modeling. The latent factors
for the tweet are shared through the tweet id. Thus, we have
a pairwise tensor interaction model for user decisions and a
topic coding model for content.

e CoFM with shared latent spaces (CoFM-SL): This is the
model introduced in Section 4.2. The feature setting is the
same as CoFM—SF.

e CoFM with latent space regularizations (CoFM—-REG): This
is the model introduced in Section 4.3. The feature setting is
the same as CoFM—SF.

For the sake of simplicity, we fix all regularization parameters to
1 and tune 7, the balance parameter of predictive modeling and
content modeling in Equation 11. We report the performance of
m = 0.3, which is the best in our experiments. We also tune K, the
dimensionality of latent factors in FM/CoFM, from 10 to 250. We
report the performance of K = 150, which is the best in the exper-
iments. For CPTR, we fix K = 200, which is used in [6]. For con-
tent modeling, we do not observe significant differences between
using log-Poisson loss and logistic loss. Thus, for generality, we
report the results based on log-Poisson loss.

Predictive Results: We compare the predictive power of differ-
ent models. First, we demonstrate how loss functions affect per-
formance, starting from pointwise loss functions. For MF, MFA and
FMA, we compare using three pointwise loss functions: squared er-
ror loss, logistic loss and Huber loss. For CoFM—-SF, CoFM-SL
and CoFM-REG, we use the same three loss functions for predic-
tive modeling while fixing log-Poisson loss for content modeling.
Since CPTR is fixed to pairwise learning, we exclude it from the ex-
periment. The result is shown in Figure 2. The first observation is
that the performance of MF which only uses user-item interactions
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Table 1: Examples of topics are shown. The terms are top
ranked terms in each topic. The topic names shown in bold
are given by the authors.

Entertainment

album music lady artist video listen itunes apple produced
movies #bieber bieber new songs

Finance
percent billion bank financial debt banks euro crisis rates
greece bailout spain economy

Politics
party election budget tax president million obama money
pay bill federal increase cuts

is significantly worse than the ones utilizing explicit features. The
second observation is that logistic loss and Huber loss is consis-
tently better than squared error loss. This might be due to the reason
that we only have binary responses (retweets), similar to what is re-
ported in Yang et al. [33]. The third observation is that CoFM—-SL
and CoFM—-REG are noticeably better than all other methods. This
validates our discussion in Section 4 that these two paradigms can
be viewed as variants of many successful co-factorization models
where the predictive aspect can benefit from the content modeling
aspect. On the other hand, CoFM~-SF performs poorly and even
cannot match the performance of FMA. We conjecture that this is
because the data is too sparse such that additional parameters in-
duced by CoFM—SF cannot be effectively learned. We also observe
that FMA performs better than MFA, indicating that ternary interac-
tions “target user-item-neighbor user” can indeed capture the dy-
namics between users on Twitter, compared to “target user-item”
binary interactions.

In addition to pointwise loss functions, we also compare perfor-
mance of different models with ranking-based loss functions, as
shown in Figure 3. The green line in the bar chart is the perfor-
mance of CPTR since it is trained with BPR. Comparing the re-
sults to pointwise loss functions, the overall performance is signifi-
cant higher, indicating that ranking-based loss functions are indeed
better for the task. Also, the discrepancy between different mod-
els becomes larger, compared to pointwise loss functions. For in-
stance, FMA, CoFM—-SL and CoFM—REG are much better than the
others, where all three are above CPTR significantly. In addition,
CoFM-SL and CoFM-REG are consistently 3% — 4% better (de-
pending on the specific ranking-based loss function) than FMA in
absolute MAP scores across 5 split of data. Overall, WARP achieves
competitive performance consistently for all models.

Content Modeling: We explore how topics are learned through
the modeling. From the formalism in Section 5.1, the matrix M

BC BCG BCGU A A-C A-G A-U AT

Figure 4: The impact of different groups of features. The effect
of “add on” is shown on the left and the effect of ‘“take out” is
on the right. For both figures, “A”, “B”, “C”, “G”, “U” and
“T” stand for “All”, “Base model”, “Content feature”, “Graph
feature”, “User feature” and ‘“Temporal feature” respectively.

can be interpreted as a topic matrix as in standard PLSA/LDA.
Thus, we can describe topics as in other topic models by ranking
terms in probabilities. This is superior to CPTR [6] where term
factors are not in the simplex. We show some example topics in
Table 1. We can see that these topics are easily recognized and
have the benefit of normal topic models while we do not have cum-
bersome Bayesian style formalism and expensive inference algo-
rithms in the model. Note, however, that content modeling is not
only for explanatory analysis—it is indeed helpful for prediction
tasks. From Figures 2 and 3, we can see that CoFM which utilizes
content modeling has better performance in general, and especially
for CoFM-SL and CoFM-REG which can outperform state-of-the-
art methods significantly.

Feature Analysis: We study how different types of features con-
tribute to the predictive power of the model. Instead of using meth-
ods like x? to calculate the correlation between feature values with
respect to classification labels, we adopt the following two straight-
forward methods. First, we start from a base model CoFM—-SL us-
ing WARP without any explicit features, which is the best model
from previous experiments, and then add one group of features
consecutively. This method, denoted as “add on”, shows the contri-
bution of each group of features as it is added into the model. The
second method, denoted as “take out”, starts with a complete model
and removes one group of features to see how performance drops
accordingly. The results for “add on” and “take out” are shown
in Figure 4. For “add on”, it is clear that each group of features
contributes to the final performance of the model and “Temporal”
features have the least marginal gain. The most gains come from
“Content” features and “Local Graph” features. This observation is
consistent with [14]. For “take out”, the red square in each bar in
the figure represents the performance deduction for the correspond-
ing feature group. Again, “Temporal” features have the least impact
on performance while removal of “Local Graph” features hurts per-
formance much more than that of “Content” features. From both
“add on” and “take out”, it seems that “Local Graph” plays an im-
portant role in the performance, followed by “Content” features.
This suggests that social connections are important in determining
retweets as well as content factors.

8. CONCLUSION

Users of social media services are often simultaneously over-
whelmed with the amount of information delivered via their social
connections and miss out on content that they might have liked to
see. Both issues serve as difficulties to the users and drawbacks to



the services. These services can benefit from understanding user
interests and how they interact with the service, potentially predict-
ing their behaviors in the future. We propose Co-Factorization Ma-
chines (CoFM) to address the problem of simultaneously predicting
user decisions and modeling content in social media by analyzing
rich information gathered from Twitter. The task differs from con-
ventional recommender systems as the cold-start problem is ubiq-
uitous, and rich features, including textual content, need to be con-
sidered. Additionally, we discuss and compare ranking-based loss
functions in the context of recommender systems, shedding light
on how they vary from each other and perform in real tasks, pro-
viding the first work in this direction. We explore a large number
of features and conduct experiments on a real-world dataset, con-
cluding that CoFM with ranking-based loss functions is superior to
state-of-the-art methods and yields interpretable latent factors.
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