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ABSTRACT
Users exhibit different intents across e-commerce services (e.g. dis-
covering items, purchasing gifts, etc.) which drives them to interact
with a wide variety of items in multiple ways (e.g. click, add-to-cart,
add-to-favorites, purchase). To give better recommendations, it is
important to capture user intent, in addition to considering their
historic interactions. However these intents are by definition latent,
as we observe only a user’s interactions, and not their underlying
intent. To discover such latent intents, and use them effectively for
recommendation, in this paper we propose an Attentive Sequential
model of Latent Intent (ASLI in short). Our model first learns item
similarities from users’ interaction histories via a self-attention
layer, then uses a Temporal Convolutional Network layer to obtain
a latent representation of the user’s intent from her actions on a
particular category. We use this representation to guide an atten-
tive model to predict the next item. Results from our experiments
show that our model can capture the dynamics of user behavior and
preferences, leading to state-of-the-art performance across datasets
from two major e-commerce platforms, namely Etsy and Alibaba.
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1 INTRODUCTION
The basic goal of a recommender system is to recommend candi-
dates from a large vocabulary of items a user might potentially
interact with. To achieve this goal, various systems have been pro-
posed which can learn users’ preferences [7, 16, 23]. One popular
category of techniques in industrial applications is Collaborative
Filtering (CF), which leverages the observation that a user is most
likely to interact with items that are similar to her historically inter-
acted items [12]. To extend this idea, various models have further
sought to capture the sequential dynamics of user feedback [10, 18].
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This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380002

Generally, these models are trained on a single interaction type
(e.g. purchases or clicks), and do not further decompose predictions
into different action or intent types.

In practice, user intent can change depending on context. Con-
sider a typical setting from e-commerce: users can click items, add
them to their favourites or carts, or purchase them if they fulfil their
criteria. Depending on the intention and preferences of the user,
she may be more likely to perform one type of interaction on an
item at a particular point of time compared to others. For example,
consider a case where the user intends to purchase a product; natu-
rally, the items they will click, add to cart and eventually buy, will
have similarities among them. So, to recommend the next purchase,
it may be helpful to consider not only what the user has previously
bought but also what products she has viewed or added to her cart
in the past. Alternately, another user might simply browse products
and add them to their cart with no immediate purchase intent; such
items may share common properties (e.g. price, aesthetics) but may
differ from those that are eventually purchased (e.g. cheaper alterna-
tives). So, one intention (exploration) leads to different interactions
compared to another (purchase). Thus we might try to recommend
items that fulfill a user’s current purpose. We argue that this is a
potential limitation of current recommender systems that fail to
differentiate between intent types (or even interaction types).

Based on the above observations, we seek a system that can
find similarities among times, and also capture users’ intentions.
This task poses several challenges. First, although intentions and
interactions are related, they are not the same; while we can directly
observe a user’s interactions, their intent is latent. Thus latent
intent must be inferred from a user’s interactions. Additionally,
a user’s intent might evolve gradually (long-term dependencies
among interactions) or suddenly (short-term dependency), making
it difficult to detect this drift from noisy action lists.

In this paper, we address these challenges and propose an Atten-
tive Sequential Latent Intent model (ASLI) which uses self-attention
and temporal convolutional networks to find similarities among
items, to capture users’ hidden intents, and to attend on them. First,
we apply a self-attention layer over all past items the user has
interacted with to find item similarities from sequences; we then
consider the interactions a user has performed on a given category
and apply a temporal convolutional network to infer the user’s
latent intent. Finally we apply another attention layer to resolve
both long-term and short-term dependencies between items and
intentions. This proves to be effective at learning users’ hidden
preferences over an item. We further show the effectiveness of our
model on real datasets from two e-commerce websites, namely Etsy
and Alibaba. Our experiments show that the model is able to obtain
state-of-the-art performance for sequential prediction tasks.
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2 MOTIVATION
2.1 Actions on Categories as Interactions
In e-commerce settings, the number of items is typically signifi-
cantly larger than the number of categories, such that user-item
interactions are much sparser than user-category interactions. For
example, for Etsy, the sparsity (the fraction of possible interactions
that are observed) is only 0.02% at the user-item level but 1.68%
at the user-category level. This means that inferring intentions
from actions might be more difficult than inferring them from cat-
egories. To understand sparsity issues better, consider the case of
a user who in ‘discovery’ mood and clicks items from ‘Wedding
Dress’ category. As she finds interesting items, she adds them in
the cart. But eventually she changes her intention to ‘purchase’
as she finds cheaper items from ‘Gifts and Mementos’ category.
This is illustrated in Figure 1(a). It might be difficult to detect the
subtle interest for a particular item from ‘Gifts and Mementos’ af-
ter the user interacted with a specific item from ‘Wedding Dress’
as they are only two instances out of many from their respective
categories. However, the connection between ‘Gifts and Mementos’
and ‘Wedding Dress’ is much more succinct and as transition data
from category to category is denser, we can learn the user’s interest
more easily. For these reasons, we consider users’ category-wise
interactions for the purpose of discovering latent intent.

2.2 Latent Factor Models of Intent
To better understand why intent is an important factor, we try to
establish the dependency between the observed states, namely the
items, and our defined interactions. If we wish to predict both, we
would calculate their joint probability conditioned on the sequence
of past items and interactions. Specifically, if we would like to cal-
culate the probability of the next item p and next interaction i for a
user u, then the joint probability can be expressed as P(p, i |Sup , Sui ).
Here, Sup and Sui are the sequences of past items and interactions
respectively. There are several ways we can factorize this probabil-
ity based on assumption of interdependencies among the variables
(e.g. items depend on interactions or vice versa). Based on the as-
sumption, the factorization can become either simple or complex.
For example, if we assume that items depend on interactions then
the factorization becomes: P(i |Sui )P(p |i, S

u
p , S

u
i ). Similar construc-

tions could be derived if we assumed interactions depend on items.
We can simplify the factorization of the same joint probability if we
assume that both items and interactions are conditionally indepen-
dent given some other latent variable. Let us denote this variable
as θ . Then, the joint probability would be factorized as follows:

P(p, i |θ, Sup , S
u
i ) = P(p |θ, Sup ) × P(i |θ , Sui )

Intuitively, the latent variable we introduce here can be defined as
some representation of intent (shopping, browsing, discovering new
items, etc.). We term this as the user’s ‘latent intent,’ and design a
model that can attend on it in order to give better recommendations.

3 PROPOSED MODEL
3.1 Problem Description
Notation is described in Table 1. We consider the problem of cap-
turing users’ hidden intent from their interacted items to obtain

Table 1: Notation.

Notation Explanation

P the set of products: {1, . . . , p . . . , |P | }

C the set of categories: {1, . . . , c . . . , |C | }

A the set of actions: {1, . . . , a . . . , |A | }

p, c, a ∈ Rd d-dimensional embedding for product p , category c and
action a

Su sequence of item and interaction tuples belonging to user
u :

(
⟨p1, i1 ⟩, . . . , ⟨p|S

u | , i|S
u | ⟩

)
op , oi predicted embedding for product p and interaction i
rop , roi scores for model prediction of product and interaction

the most relevant next item recommendation. For that purpose,
we define latent intent as a representation of users’ interactions
which can be used to predict (or ‘explain’) both the next item
and the next interaction. Assume P = {1, . . . ,p . . . , |P |} is the
set of all products, C = {1, . . . , c . . . , |C|} is the set of all cat-
egories and A = {1, . . . ,a . . . , |A|} is the set of all actions. If
a user takes an action a on an item p from a category c then
p, c and a are the corresponding d-dimensional embedding for
product, category and action. As mentioned above, we have de-
fined interactions as a combination of actions from a particular
category, i.e., i = c + a. Then we formulate our problem as fol-
lows: given a sequence of products and user interactions, Su =(
⟨p1, i1⟩, ⟨p2, i2⟩, . . . , ⟨p |S

u |, i |S
u |⟩

)
, in each step, the goal is to

capture hidden or latent intent and use it to predict both the next
item and interaction, i.e., given

(
⟨p1, i1⟩, . . . , ⟨p |S

u |−1, i |S
u |−1⟩

)
,

predict
(
⟨p2, i2⟩, . . . , ⟨p |S

u |, i |S
u |⟩

)
. Here, |Su | is the length of the

sequence for user u.

3.2 Preliminaries
3.2.1 Self-Attentive Networks. The self-attention model is a re-
cently proposed sequential model which achieved state-of-the art
performance in various NLP tasks [21]. Self-attention first tries to
calculate similarity scores between a query and a key, and use it
as attention weights for a value. Here, queries, keys, and values
can be the same objects (e.g. the sequence of items). Specifically,
self-attention is defined as

Attention(Q,K,V) = softmax
(
QKT
√
d

)
V (1)

where the Q, K, and V are the query, key, and value respectively.
These are calculated by a linear projection of the input embedding.
Specifically, Q = SWQ , K = SWK , V = SWV , where S ∈ Rn×d is a
matrix describing a sequence of length n with d dimensional input
embeddings, i.e., S = [e1; . . . ; en ], and WQ ,WK ,WV ∈ Rd×d are
projection matrices. The attention score betweenQ and V is divided
by

√
d to avoid large values of the dot product (especially with many

dimensions). To maintain causality and to prevent information
leaking from back to front, attention is modified by forbidding all
links between Qi and Kj (j > i). Note that as the self-attention
operation is not aware of the order, each position is assigned a
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(a) (b)

Figure 1: (a) Overview of our model. Here, an example use case is shown where the user initially has a ‘discovery’ intent
which is reflected by interacting with aesthetic and expensive items. Eventually, she changes her intention toward cheaper
and plainer looking items. (b) Detailed architecture

learned embedding which is added to the input embedding. This
layer has a complexity of O(n2d) because of Equation 1.

3.2.2 Temporal Convolutional Networks (TCN). In contrast to self-
attention, convolution has a fixed context window. We can perform
convolution in a number of different ways. In our task, we consider
performing convolution in a 1D space (i.e., a sequence) based on a
fixed kernel size which slides over the input sequence and deter-
mines the importance of context elements via a set of weights. The
number of parameters can be reduced from d2l to dl where l is the
kernel width if we perform a depth-wise convolution with weight
W ∈ Rd×l . Specifically, the output for each element i in the input
sequence S is calculated as follows:

DepthwiseConv(S,Wc ,:, i, c) =
l∑
j=1

Wc , j ∗ S(i+j−[l+1]/2),c (2)

Here c is the current channel. Each dimension of the latent space
can be considered as a channel, so usually c = d . The computational
complexity of this layer is O(ndl).

3.2.3 Feed-forward Network (FFN). Although both self-attention
and convolutional models are able to aggregate sequential infor-
mation through adaptive weights, they are still linear models. To
introduce non linearity, the next step is to feed the outputs from
these models to two layer feed-forward networks (FFNs). Specifi-
cally, if ot is the output at step t (either from self-attention or TCN),
then:

FFN(ot ) =W2(ReLU(W1ot + b1)) + b2

where ReLU is Rectified Linear Unit activation function [3], W1,
andW2 are d × d weight matrices and b1 & b2 are d-dimensional
bias vectors. We should note that FFN is applied point-wise, i.e.
outputs from each step are taken as inputs separately. Therefore,
there is no interaction between outputs from the two steps, and any
leakage of information is prevented. As we are applying point-wise
FFN, its computational complexity is O(nd2).

3.3 High-Level Overview of ASLI
We show a high level summary of ASLI in Figure 1(a). In ASLI, we
first apply self-attention over the sequence of items to calculate sim-
ilarities of items from all positions. We do not apply self-attention
again to these outputs as we would like to probe which part of the
item sequence is most relevant to users’ hidden intent. To capture
latent intent, intuitively speaking, we need a hidden representation
from users’ actions. As mentioned before, this poses a unique chal-
lenge as users’ item-wise actions are sparse. To alleviate sparsity
issue, one of our key modeling decisions is to treat category-wise
actions as interactions. In ASLI, we choose TCN to get features from
these interactions as it is relatively shallow and easily parallelizable.
Later, to make sure this latent feature captures intent, we use it for
dual prediction of both the next interaction (by a feedforward net-
work) and the next item (by a co-attentional transformer layer). We
take co-attention between the first layer’s output (which calculates
item similarities) and discover hidden intents as we would like to
resolve both long-term and short-term dependencies between them
and better learn items’ relevance with respect to users’ intent.

3.4 ASLI
3.4.1 Embedding Layer: We show the detailed architecture of ASLI
in Figure 1(b). We first transform the training sequence Su for user
u into a fixed length (n) sequence where n represents the maximum
number of steps that our model can process. For item p, category
c and action a, we have corresponding embeddings p, c, a. From c
and a, we construct the interaction embedding, i.e. i = c + a. If the
sequence length is greater than n, we consider the most recent n
actions. If the sequence length is less than n, we pad on the left
until the length is n. A constant zero vector 0 is used for padding.

3.4.2 Self-Attention Layer. The goal of this layer is to discover
similarities among items based on users’ sequential interactions.We
can calculate similarity scores among items from different positions
by applying self-attention on the item sequence. We consider a
learnable positional embedding t for the current step or position t
which we add to the current item embedding p [21]. This way we
build a sequence matrix, Sp and use it to calculate the query, key and
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value, i.e, Q = SpWQ , K = SpWK , V = SpWV . Finally, we apply
Equation 1 and get an output. Then, we apply residual connection
to leverage any low-level information [5] and layer normalization
[1] to stabilize and accelerate training. The bottom-left block in
Fig. 1(b) shows its architecture.

3.4.3 TCN Layer. In this layer, we apply depth-wise convolution
(Equation 2), DepthwiseConv(Si ,W), followed by residual connec-
tion and layer normalization, to the sequence matrix of interactions
Si . This layer (shown as the bottom-right block in Fig. 1(b)) gives
us the latent representation of intent which we use as a query
to predict the next item. We also use it as an input to a feedfor-
ward network which gives us an embedding, oti , to predict the next
interaction (the middle block in Fig. 1(b)).

3.4.4 Attention to Intention Layer. Finally, to find the relevance of
items with latent intent, we treat the outputs from the first self-
attention layer as keys and values and the outputs of the TCN as
queries for to another self-attention layer. As the query is a latent
representation of intent we call this the Attention to Intention Layer.
Output from this layer is taken as input to another feedforward
network which outputs an embedding, otp for predicting the next
item. The top block in Fig. 1(b) shows its overall architecture.

3.4.5 Loss Function. For training the model, we adopt a point-wise
loss where we consider one positive example and one negative
example [9, 13]. As we are predicting both the next item and next
interaction in each step, we have one ground truth for each, namely
p and i . For predicting the next item, we randomly sample a negative
item (an item which the user has not interacted with before) from
the data. Then we calculate the dot product between the model
output and positive/negative example, and obtain a score. This
score is used to calculate a ranking loss, Lranking for the next item
in the following manner:

Lranking = −
∑

Su ∈S

∑
t ∈[1, ...,n]

[
log(σ (rotp )) + log(σ (1 − rotp′

))

]
Here, rotp is the dot product for the positive item p, and rotp′ is the
score for the negative item p′. Similarly, for predicting the next
interaction, we have the ground truth next interaction i . Then we
randomly sample a combination of a category-action pair which is
not observed for that user, and construct the negative interaction
i ′. We similarly calculate the scores and calculate the interaction
loss. Specifically,

Linteraction = −
∑

Su ∈S

∑
t ∈[1, ...,n]

[
log(σ (roti )) + log(σ (1 − roti′

))

]
Here, roti and roti′ are the scores for the positive and negative inter-
action. Our final loss is L = Lranking + Linteraction.

4 EXPERIMENTS
In this section, we present our experimental setup and empirical
results. Our experiments are designed to answer the following re-
search questions: RQ1: How does our model which captures latent
intent perform compared to other recommendation models? RQ2:
What is the influence of various components of our architecture?
RQ3:What is the training efficiency and scalibility of our model?

Tmall Tmall-Small Etsy
# users 9,883 6,280 6,690
# items 569,658 47,759 119,310
# categories 6,352 130 608
# actions 2.45M 0.44M 0.22M
avg. actions/user 248.10 71.98 34.17
avg. views/user 211.32 62.84 27.31
avg. add-to-favorites/user 11.66 3.01 3.37
avg. add-to-carts/user 17.15 4.22 2.47
avg. purchases/user 7.97 1.91 1.02

Table 2: Data statistics after pre-processing

4.1 Datasets
To demonstrate ASLI’s performance, we consider datasets from
two popular e-commerce websites: Alibaba and Etsy. Table 2 shows
the statistics of these datasets after preprocessing. Following the
settings of the next item recommendation [13, 24], for each user,
we test on the last item, validate on the item before that, and train
with the rest of the sequence.
Tmall1. Tmall is a publicly available dataset provided by Alibaba.
Originally, it contains around 12 million actions from 10,000 user
records. There are four types of actions the a user can take, namely,
click, add-to-favorite, add-to-cart and purchase. For pre-processing,
we followed the same procedure from [7, 8, 18] and removed any
user or item with fewer than 5 interactions. Also, note that some
items may be clicked many times by a user which may introduce
bias toward certain actions. To remedy this we consider only the
first such action the user has taken. After preprocessing we get
9,883 users, 569,658 items, 6,352 categories, and 2,454,115 actions.
Etsy. Etsy is an e-commerce platform focused on personalized and
handmade items. The dataset contains the activity logs of users
with accounts on the recommendation module collected between
Oct. 15, 2018 to Dec. 15, 2018. The data were filtered following
[4], such that any items or users with fewer than 20 actions are
removed. After processing, it contains 6,690 users, 119,310 items,
608 categories, and 215,227 actions.

For fair comparison, we also prepare a version of Tmall, namely
Tmall-Small, which is pre-processed in the same way as Etsy. It con-
tains 6,280 users, 47,759 items, 130 categories, and 439,497 actions.

4.2 Evaluation Metrics
We report results for two popular top-k metrics in recommender
systems, namely: HitRate@k and NDCG@k [7, 9]. HitRate@k is
the fraction of times the ground-truth item appears among the
top-k predicted items, while NDCG@k (Normalized Discounted
Cumulative Gain) is a position-aware metric which assigns larger
weights to higher positions. Specifically, if the ranking of the ground
truth item for a user is ranku and ranku ≤ k , thenNDCG@k for that
user is calculated as follows: 1

log2(ranku+1)
. If ranku > k , NDCG@k

is 0. For ranking items, we consider 100 negative samples for each
ground-truth item. For values of k , we choose 5 and 10.

4.3 Baselines
To show the effectiveness of our model, we compare ASLI with
two groups of recommendation baselines. The first group contains
general non-sequential recommender models:
1https://tianchi.aliyun.com/dataset/dataDetail?dataId=46
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Dataset

Tmall Tmall-Small Etsy

NDCG HitRate NDCG HitRate NDCG HitRate

k = 5 k = 10 k = 5 k = 10 k = 5 k = 10 k = 5 k = 10 k = 5 k = 10 k = 5 k = 10

Most-Pop 0.1688 0.2030 0.2459 0.3516 0.1271 0.1577 0.1898 0.2848 0.0539 0.0691 0.08116 0.1283
BPR-MF 0.3541 0.3862 0.4608 0.5601 0.2688 0.3124 0.3774 0.5127 0.2724 0.2800 0.2849 0.3086
NextItRec 0.4301 0.4514 0.5028 0.5686 0.3981 0.4235 0.4705 0.5493 0.3543 0.3671 0.3866 0.4265
SASRec 0.4771 0.5028 0.5436 0.6230 0.4525 0.4773 0.5269 0.6037 0.3765 0.3828 0.3927 0.4123
ASLI 0.5133 0.5367 0.6051 0.6769 0.4334 0.4678 0.5367 0.6429 0.3946 0.4015 0.4310 0.4523

Table 3: Performance of various models

Attention Type Tmall Etsy

NDCG@5 HR@5 NDCG@5 HR@5

Seq-Seq (SASRec) 0.4753 0.5434 0.3792 0.3976
Seq-Item 0.3641 0.4297 0.2542 0.2773
Seq-Action 0.3766 0.4644 0.3386 0.3658
Seq-Category 0.4787 0.5690 0.3788 0.4189
Seq-Latent Intent 0.5101 0.5955 0.3940 0.4300

Table 4: Impact of different attentions on both datasets

• MostPop:MostPop is a simple baseline which ranks items
based on their popularity.

• BPR-MF: Bayesian personalized ranking factorizes the user-
item interaction matrix using a ranking loss [17].

The second group contains two recently proposed sequential deep
learning models:

• NextItRec: This is a convolutional model for next item rec-
ommendation proposed in [24]. NextItRec uses 1-D dilated
convolutional networks to obtain the context of the past L
items.

• SASRec: This is a sequential model based on self-attention
for next item recommendation [13].

As other sequential models (such as FPMC [18], Fossil [8], improved
GRU4Rec [10], CASER [20]) have been outperformed by the sequen-
tial models mentioned above, we omit comparisons against them.

4.4 Implementation Details
We implement our proposed model in TensorFlow, and conduct all
experiments with a single GPU (NVidia 1080). We use an Adam
optimizer [14] to update model parameters. Based on the average
number of actions per user, we fix 50 as the maximum sequence
length for Etsy, 100 for Tmall-Small, and 300 for Tmall. The batch
size is 32 for NextItRec and 128 for the rest. For all models, 200
latent dimensions yielded satisfactory results. To tune other model
specific hyper-parameters, we followed the strategies suggested by
the methods’ authors. For our model, we set the dropout rate to 0.3
after performing a grid search from {0.1, 0.2, 0.3, 0.4, 0.5} and the
learning rate to 0.001 from {0.1, 0.01, 0.001, 0.0001, 0.00001}. We
also tune the kernel size for TCN layer which we discuss later on.
4.5 Performance
To answer RQ1, we report the performance of each of the mod-
els in Table 3. From the table, our first observation is that the

group of all sequential deep-learning models outperform the non-
sequential group. Between the two baseline models from the first
group, BPR-MF performs significantly better than popularity-based
model, MostPop. Although BPR-MF can learn static user prefer-
ence, it cannot capture sequential dynamics. Hence, all deep se-
quential models which are capable of learning such dynamics, out-
perform BPR-MF. Among the sequential models, we can observe
that NextItRec generally performs better in shorter sequence data
(Etsy) than longer ones (both Tmall and Tmall-Small). Moreover,
it achieves higher HitRate@20 (0.4265 vs 0.4123) for Etsy than the
self-attention based model SASRec. Presumably, this owes to the
fixed size of dilated kernels in NextItRec enabling it to capture se-
quential patterns for short-length sequences better than for longer
ones. Apart from this, SASRec performed better than NexitItRec
in general. Overall, ASLI achieves the best performance under all
metrics for all datasets except Tmall-Small under NDCG where its
performance was worse than SASRec (roughly 4% less NDCG for
k = 5 and 2% less for k = 10). This result shows one of the most
important dependencies of our model on the number of categories.
This dependency can be better explained using an example of a
dataset with only one category. In this case, our model will treat
all category-wise action almost equally, and therefore, it will not
be able to fully extract useful patterns for discovering intent. This
example, however simple, provides an intuitive reasoning for ex-
plaining the performance gap for the Tmall-Small dataset. Of note,
Tmall-Small was pre-processed using Etsy’s scheme, and there are
only 130 categories for this dataset which may be responsible for
the performance drop in NDCG. In both Tmall and Etsy dataset,
the number of categories is much higher (above 500) and our model
achieves the best performance under all metrics. For example, the
improvement under NDCG for these two datasets is at least 4.8%.
Under HitRate, it is 6% or more. Next we discuss the impact of
different attentions and the effect of kernel size l to answer RQ2.

4.6 Impact of Attention to Latent Intent
For our choice of query to the last attention layer, we could poten-
tially use embeddings for items, actions or categories in addition to
latent intent. Table 4 compares these choices of query. Here ‘Seq’
denotes the sequence output from the first self-attention layer. SAS-
Rec tries to find intrinsic properties of items from the first layer
and uses ‘Seq-Seq’ attention to resolve any dependencies that are
missed in the first layer. ‘Seq-Item’ denotes using item embeddings
as queries in the second layer. Seq-Item performs worse than Seq-
Seq, possibly because it redundantly calculates the similarity of
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Figure 2: Effect of kernel size l on performance.

items to sequences and may lose the resemblance found in the first
layer. When actions or categories are used, performance improves
significantly, showing that both are important factors and thus
using both as interactions for discovering latent intent and paying
attention to it leads to better recommendations.

4.7 Effect of kernel size l on performance
The kernel size l in TCN layer is a key hyper-parameter in our
model. For analyzing its effect, we vary its size from 5 to 25 (by
intervals of 5), and show NDCG@5 for both datasets in Fig. 2. If we
increase l , we are working with a larger context size for extracting
latent intent which may lead to a performance gain. Interestingly,
from the figure, we make an important observation that increasing
l arbitrarily may not lead to better performance. In our case, kernel
sizes of 10 and 20 worked better for Tmall and Etsy. The following
discusses experimental results for answering RQ3.

4.8 Training Efficiency and Scalibility
To emprically show training efficiency of our model, we test how
fast our model converges compared to other sequential models.
Figure 3 shows the convergence results for the Tmall dataset. We
see that ASLI converges faster than the other two (within 20 epochs
or roughly 350 seconds) although its per-epoch time is more than
SASRec’s. We think the main reason for this is that our joint opti-
mization for both next item and next interaction helps the model to
quickly learn about the relashionships of items. In terms of scalabil-
ity, we should note that the overall computation complexity of our
model is O(n2d + ndl + nd2) (due to self-attention, TCN and FFN
layer). As n is typically larger than d , the complexity is dominated
by the n2d term. However, both self-attention and the TCN layer
are fully parallelizable in the GPU and can easily scale. For example,
when we increased n from 50 to 600 for Tmall, the per epoch time
increases from 7 sec. to 45 sec. (full results not shown for brevity).

5 RELATEDWORK
Traditionally, recommender system focus on users and items via
interaction matrices. These interactions can be explicit (e.g. ratings)
or implicit (e.g. clicks, purchases, comments, etc.) [12, 17]. Popular
approaches include Matrix Factorization (MF) methods which aim
to uncover latent dimensions from interaction matrices [15, 19].
Modeling implicit behavior is challenging due to the ambiguous
interpretation of ‘non-observed’ data (i.e., items the user did not
interact with). To address this problem, point-wise [12] and pairwise
[17] methods have been proposed.

Figure 3: Training time on Tmall

Recommendations can be improved by accounting for temporal
dynamics. For example, TimeSVD++ [2], achieved strong results
on the Netflix challenge, by splitting time into several segments
and modeling users and items separately in each. Such models are
essential to understand datasets that exhibit temporal ‘drift’ [2, 23].

Sequential recommendation (or next-item recommendation) is
slightly different from temporal recommendation in that it only
considers the order of actions rather than timestamps. FPMC uses
matrix factorization, augmented with an item-item transition term
to capture long-term preferences and short-term transitions [18].
Since the previous item provides ‘context’ for the next action, first-
order MC based methods show strong performance, especially on
sparse datasets [7].

Some methods adopt high-order MCs that consider more pre-
vious items [6], [8]. For example, GRU4Rec uses Gated Recurrent
Units (GRU) to model click sequences for session-based recom-
mendation [11], and an improved version further boosts its Top-N
recommendation performance [10]. In each time step, RNNs take
the state from the last step and current action as its input. These
dependencies make RNNs less efficient, though techniques like
‘session parallelism’ have been proposed to improve efficiency [11].
Convolutional networks have recently been applied in sequential
recommendation settings. CASER [20] views the embedding matrix
of the L previous items as an ‘image’ and applies convolutional
operations to extract transitions while NextItRec [24] applies 1-D
dilated convolutions to get the context. Self-attention based [13, 25]
networks have also been proposed for sequential recommendation
due to their tremendous success in various NLP tasks. Recently,
[22] proposed a mixture-channel purpose routing network to model
different purposes of items in anonymized sessions. Although these
methods can model dynamic user preferences or item purposes,
they do not consider the influence of user intent. We view recom-
mendation as a joint task, i.e., predicting both the next interaction
and the next item, and aim to model both via a unified framework
to discover users’ latent intent.

6 CONCLUSION
In this paper, we proposed ASLI, which achieves better recommen-
dations by capturing users’ hidden intents from their interactions.
In addition to finding similarities among items, ASLI makes use
of a TCN layer to obtain latent representation of users’ intentions,
which are used to query an attention layer to find which items
are most relevant to users’ intents. Through experiments, we find
that our model outperforms the current state-of-the-art on two
real-world datasets.
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