Machine Learning and Al at Etsy

March 7, 2018

Liangjie Hong Head of Data Science, Etsy Inc.

Liangjie Hong

- Head of Data Science at Etsy since Aug, 2016
- Senior Manager of Research at Yahoo Research in Sunnyvale, CA Leading science efforts for personalization and search sciences.
- Published papers in SIGIR, WWW, KDD, CIKM, AAAI, WSDM, RecSys and ICML (2400+ citations)
- WWW 2011 Best Poster Paper Award
 WSDM 2013 Best Paper Nominated
 RecSys 2014 Best Paper Award
- Program committee members in KDD, WWW, SIGIR, WSDM, AAAI, EMNLP, ICWSM, ACL, CIKM, IJCAI and various journal reviewers
- PhD in Machine Learning from Lehigh University

Etsy

OUR MISSION

Reimagine commerce in ways that build a more fulfilling and lasting world

Etsy – A Global Marketplace

Artifact Bags
Omaha, NE
Photo by: Dana Damewood and Jackie Sterba

Clap Clap

Los Angeles, CA

Photo by: Bert Youn and Mimi Kim

redravenstudios
Pittsburgh, PA
Photo by: Janelle Bendyck

Little Hero Capes

Somerset, MA

Photo by: Rich Vintage Photography

Cattails Woodwork

Hermitage, PE, Canada

Photo by: Cattails Woodwork

Room for Emptiness
Berlin, Germany

sukrachand Brooklyn, NY Photo by: sukrachand

Nicole Porter Design
Saint Paul, MN
Photo by: Nicole Porter Design

noemiah

Montreal, QC, Canada

Photo by: noemiah

Lorgie Fremantle, WA, Australia Photo by: Lorgie

Jeremiah Collection
San Francisco, CA
Photo by: Matthew Reamer

Docksmith

Brunswick, ME

Photo by: Docksmith

purlBKnit Brooklyn, NY Photo by: purlBKnit

Julia Astreou Nicosia, Cyprus Photo by: Panagiotis Mina

Moira K. Lime
Omaha, NE
Photo by: Moira K. Lime

Nested Yellow
Portland, OR
Photo by: Jessica Dremov and Nested Yellow

Habitables
Madrid, Spain
Photo by: Habitables

Woodstorming
Kaunas, Lithuania
Photo by: Ilona & Martynas from Instudija

karoArt

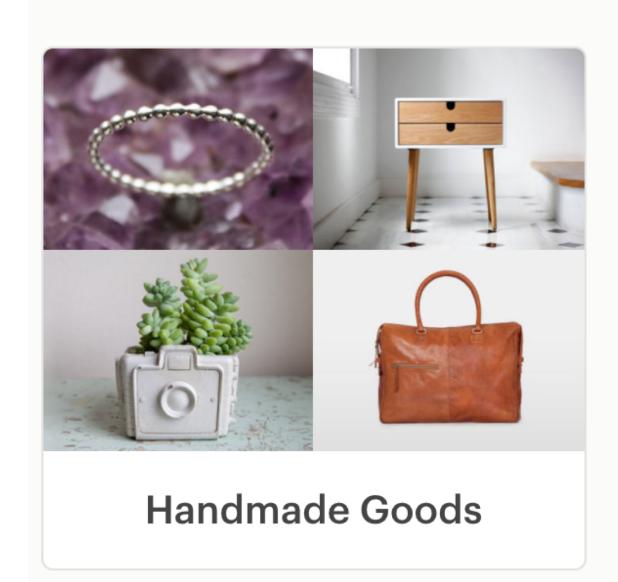
Dublin, Ireland

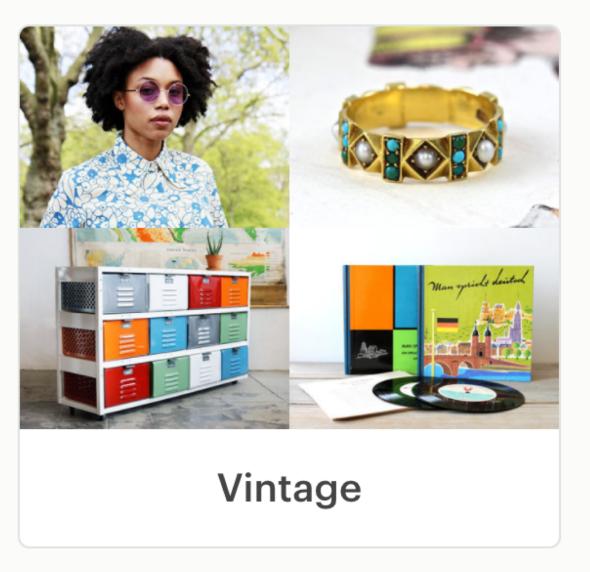
Photo by: Christine Burns

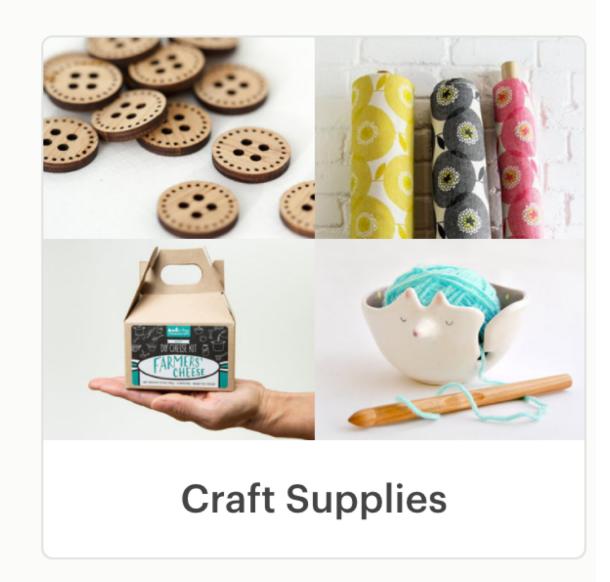
ADIKILAV

Jerusalem, Israel

Photo by: Shlomit Koslowe


My A La Mode Boutique


Ecuador


Photo by: My A La Mode Boutique

Etsy – A Global Marketplace

What can you sell on Etsy?

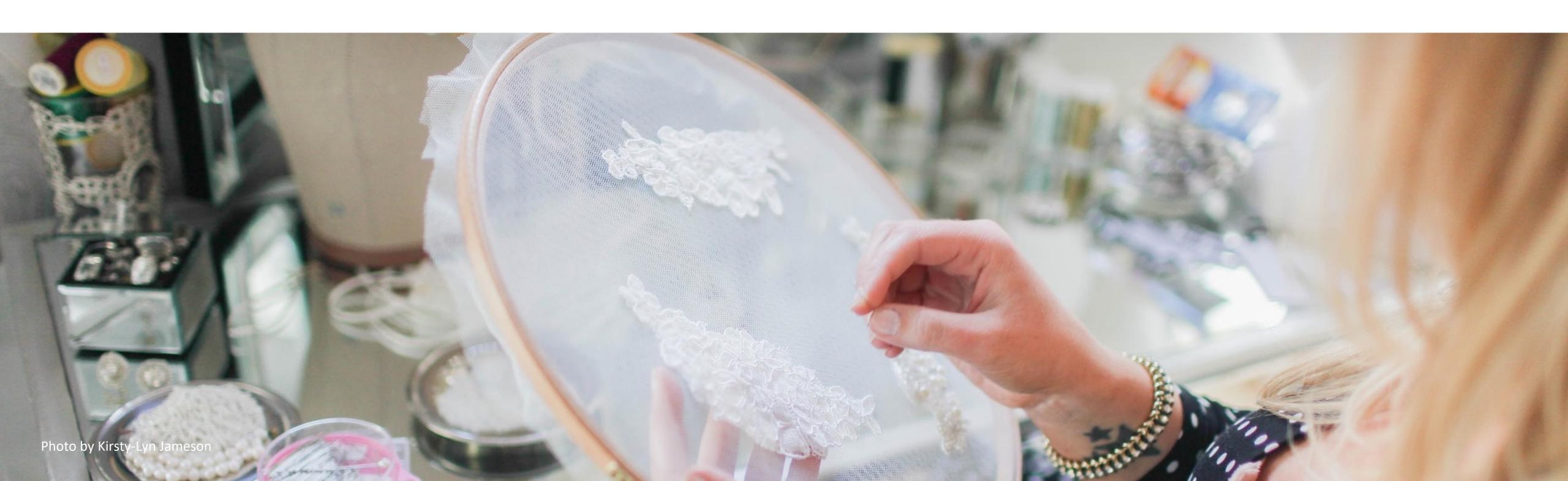
(20 years or older)

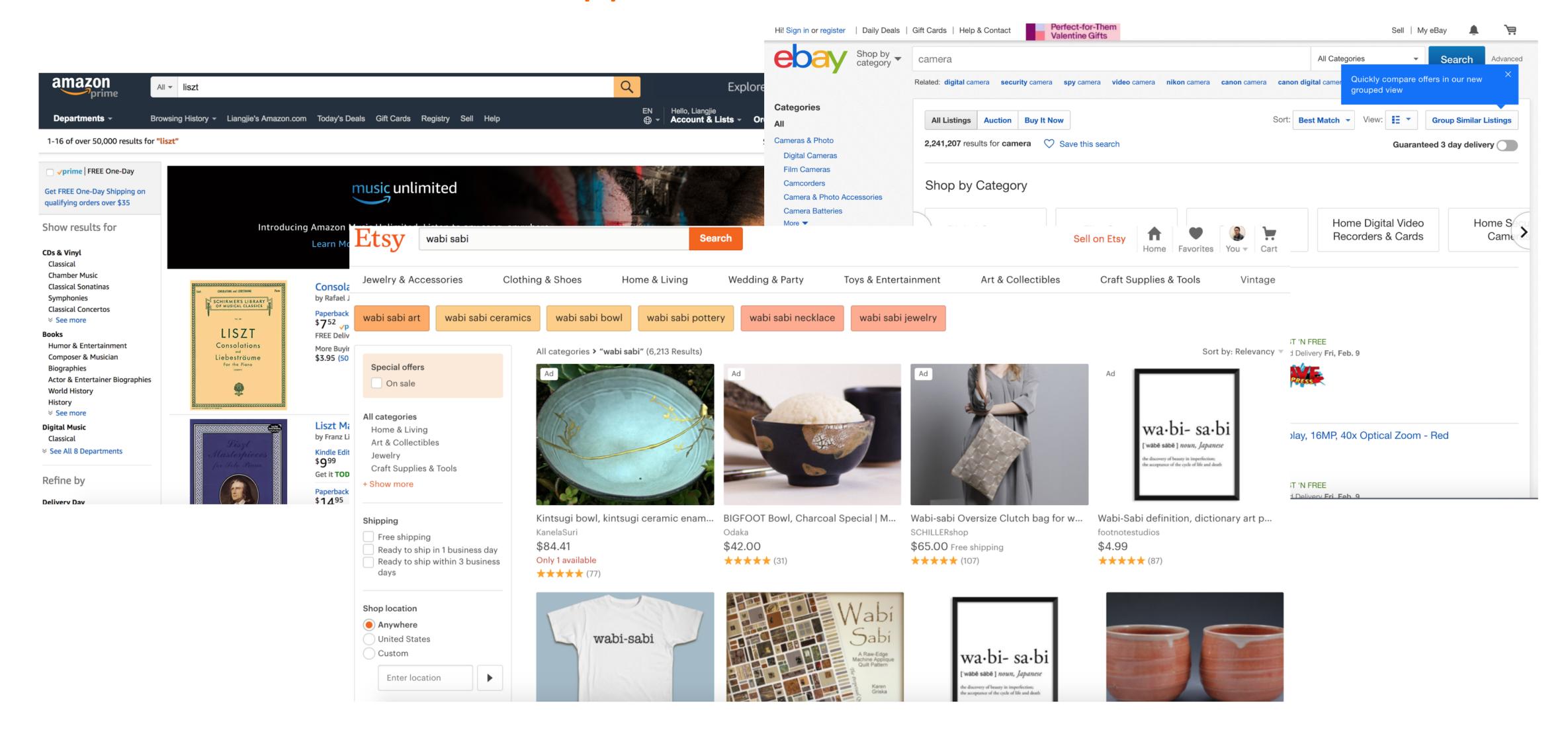
By The Numbers

1.9M

active sellers

31.7M


active buyers


\$2.8B

annual GMS

45+M

items for sale

- . Search
- . Recommendation
- Advertising

- . Search
- . Recommendation
- . Advertising

- . Shopping
- . Discovery

. Search

- Generic search v.s. E-commerce search
- Relevance, Revenue, Diversity, Discovery

. Search

- Generic search v.s. E-commerce search
- Relevance, Revenue, Diversity, Discovery

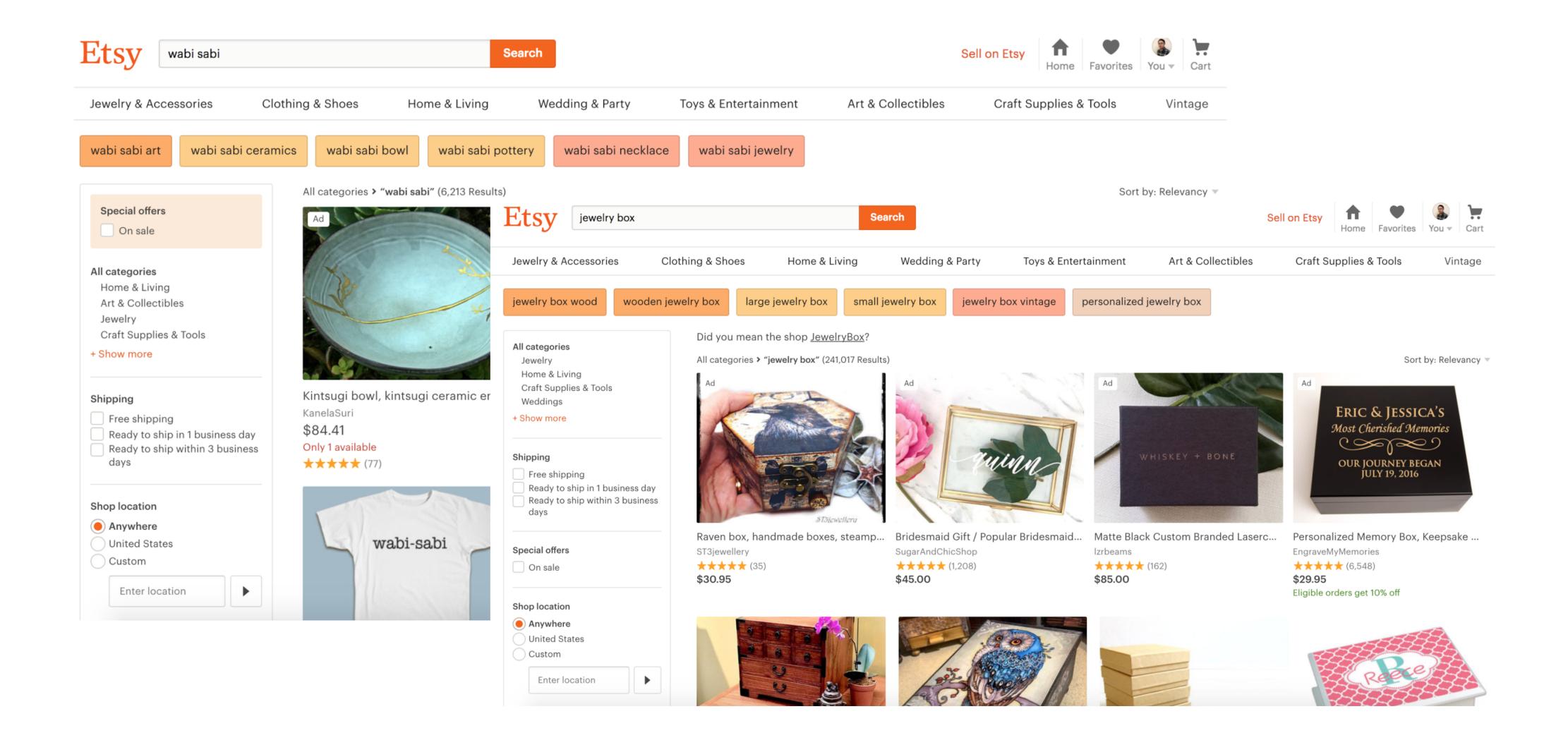
. Recommendation

- Rating/favorite prediction
- Clicks and purchase funnel
- Revenue, Seasonal, Occasion, Inventory

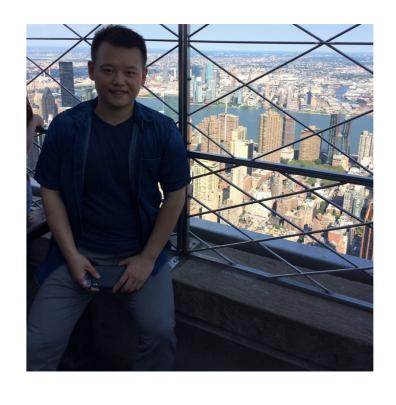
. Search

- Generic search v.s. E-commerce search
- Relevance, Revenue, Diversity, Discovery

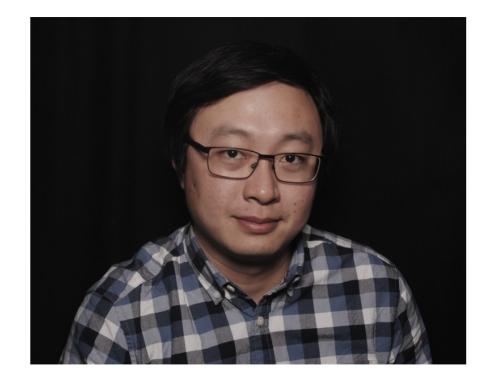
. Recommendation


- Rating/favorite prediction
- Clicks and purchase funnel
- Revenue, Seasonal, Occasion, Inventory

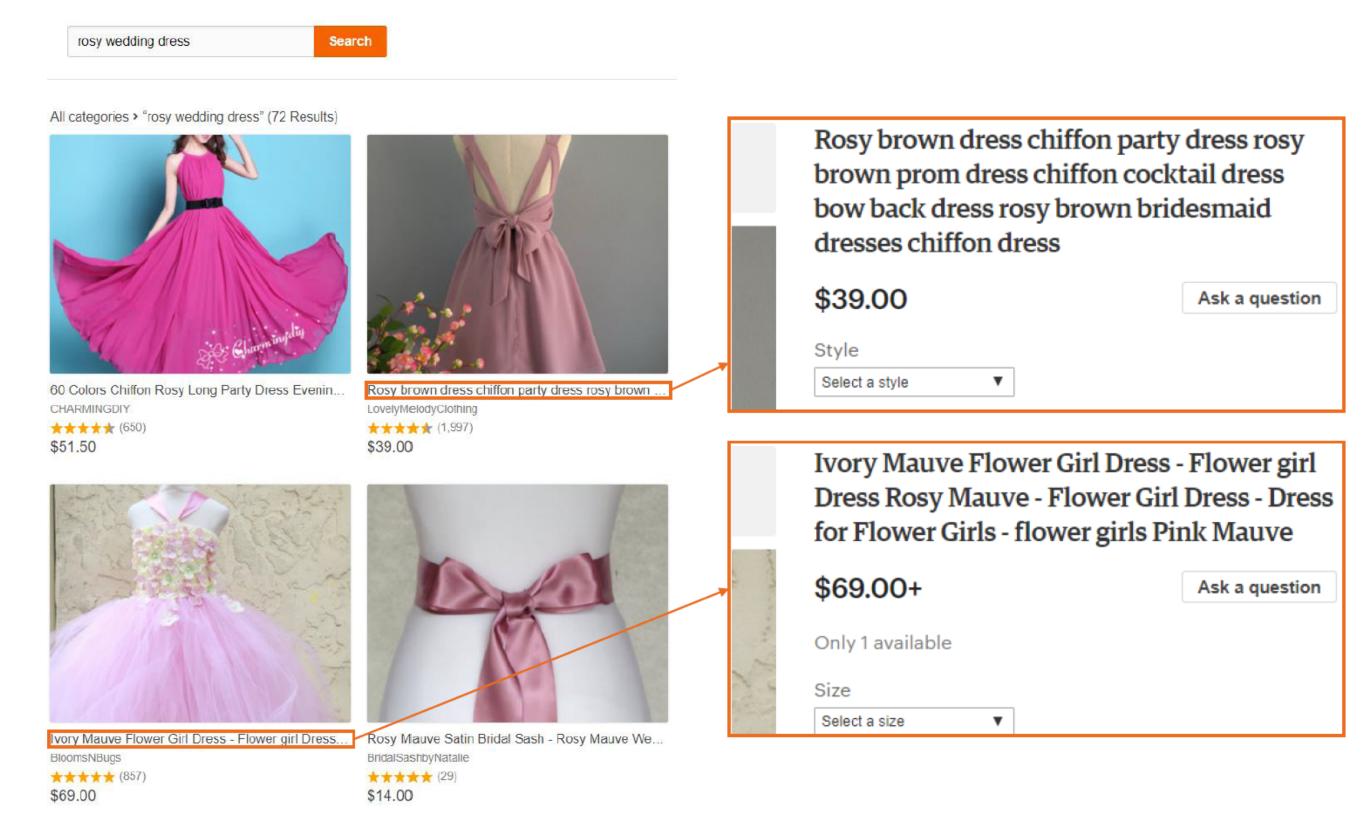
. Advertising


Two-sided marketplace

- . Search
- . Recommendation
- Advertising


- . How to measure
- . How to optimize

- Liang Wu, PhD Student from Arizona State University
- Diane Hu, Staff Data Scientist at Etsy
- Liangjie Hong, Head of Data Science at Etsy



$$GMV = \underbrace{\sum_{\forall s \in S} \sum_{\forall i^s} \underbrace{Price(i^s)}_{\text{Price of } i^s} \underbrace{Pr(\Phi = 1|i^s, q^s)}_{\text{Prob of purchase}},$$
A search session An item in s

Optimizing Gross-Merchandise-Value (GMV) in E-commerce Search

Purchase Decision Process

Search Page Product Page

- Click Decision(s) from Search-Result-Page (SERP)
- Purchase Decision(s) from Listing Page

$$Pr(\Phi = 1|i,q) = \underbrace{Pr(\Psi = 1|i,q)}_{\text{click model}} \underbrace{Pr(\Phi = 1|\Psi = 1,i,q)}_{\text{purchase model}},$$

Optimizing Gross-Merchandise-Value (GMV) in E-commerce Search

Click Decision(s) from Search-Result-Page (SERP)

$$NDCG_{K}(\varrho) = N_{max}^{-1} \sum_{r=0}^{K-1} \frac{2^{l(r^{-1})}}{\log(1+r)},$$

$$\mathcal{L}_{c} = N_{max}^{-1} \sum_{i=1}^{m} \frac{2^{l(i)}}{\log(1+\sum_{i_{b}=1, i_{b} \neq i_{a}}^{m} \sigma(f_{c}(x_{a}) - f_{c}(x_{b})))},$$

 f_c is learned by a neural-network model through back-prop.

Optimizing Gross-Merchandise-Value (GMV) in E-commerce Search

Purchase Decision from Listing Page

$$\mathcal{L}_p = \sum_{i=1}^{N} Price(i) \log\{1 + \exp[-l_i'(w_p x_i)]\} + ||w_p||^2,$$

Price-Weighted Logistic Regression

Sessions	Queries	Items	Avg. Items per Session
334,931	239,928	6,347,251	19.0
Keywords	Buyers	Sellers	Avg. Items per Query
631,778	270,239	550,025	26.5

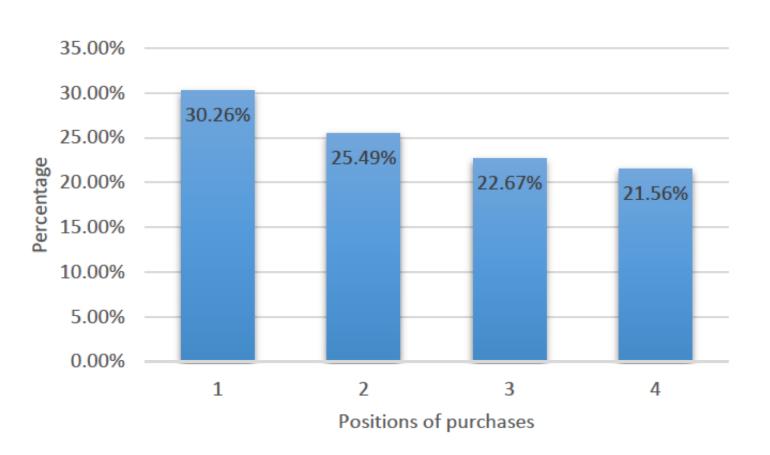


Figure 2: Position distribution of items being purchased in the top 4 spots of a search result page. The first position achieves the most purchases, while nearly 70% of purchases are in the lower positions.

		Sum of TF				
	Low Level	Sum of Log TF				
		Sum of Normalized TF				
		Sum of Log Normalized <i>TF</i>				
		Sum of IDF				
		Sum of Log IDF				
Relevance		Sum of ICF				
		Sum of TF-IDF				
		Sum of Log TF-IDF				
		TF-Log IDF				
		Length				
		Log Length				
	High Level	BM25				
		Log BM25				
		LM_{DIR}				
		LM_{JM}				
		LM_{ABS}				
		Price				
Revenue		Price - Cat.Mean				
		(Price – Cat.Mean)/Cat.Mean				

	RankNet [1]	RNet		
Click	RankBoost [10]	RBoost		
	AdaRank [39]	ARank		
	LambdaRank [2]	LRank		
	ListNet [3]	LNet		
	MART [12]	MART		
	LambdaMART [38]	LMART		
	SVM [4]	SVM		
Purchase	Logistic Regression [28]	LR		
	Random Forest [22]	RM		
	Weighted Purchase [44]	WT		
Both	LMART+RM	LMRM		
	LETORIF	LETORIF		

Category	Method	Click NDCG@5			Pur	chase ND	CG@5	Revenue NDCG@5		
		Train	Vali	Test	Train	Vali	Test	Train	Vali	Test
	RNet	0.1743	0.1731	0.1378**	0.1672	0.1721	0.1676**	0.1692	0.1700	0.1356**
	RBoost	0.2150	0.1768	0.1323**	0.2150	0.1768	0.1715**	0.2150	0.1768	0.1311**
	ARank	0.1718	0.1711	0.1351**	0.1718	0.1711	0.1706**	0.1718	0.1711	0.1358**
Click	LRank	0.1694	0.1688	0.1360**	0.1678	0.1711	0.1672**	0.1713	0.1719	0.1366**
	LNet	0.1665	0.1703	0.1355**	0.1601	0.1682	0.1620**	0.1646	0.1696	0.1348^{**}
	MART	0.2700	0.1758	0.1380**	0.2155	0.1803	0.1796^*	0.2696	0.1688	0.1408^{**}
	LMART	0.3056	0.1777	0.1412	0.3056	0.1777	0.1717**	0.3056	0.1777	0.1370^{**}
	SVM	0.1785	0.1772	0.1336**	0.1831	0.1754	0.1755**	0.1816	0.1752	0.1320**
Purchase	LR	0.1978	0.1739	0.1310**	0.1978	0.1739	0.1782**	0.1978	0.1739	0.1332^{**}
	RM	0.3359	0.1698	0.1363**	0.3329	0.2305	0.1798**	0.3327	0.1685	0.1376**
Both	WT	0.1970	0.1682	0.1334**	0.1815	0.1763	0.1761**	0.1781	0.1648	0.1375^{**}
	LMRM	0.2943	0.2597	0.1354**	0.3087	0.2530	0.1688**	0.2943	0.2594	0.1332**
	LETORIF	0.1765	0.1550	0.1351**	0.2731	0.1841	0.1801	0.2039	0.1698	0.1494

Symbol * indicates that the method is outperformed by the best one by 0.05 statistical significance level, ** indicates 0.01.

Category	Method	Rev@1	Rev@2	Rev@3	Rev@4	Rev@5	Rev@6	Rev@7	Rev@8	Rev@9	Rev@10
Click	RNet	4.47**	4.69**	4.89**	4.91*	5.06**	5.23**	5.21**	5.33**	5.46**	5.55**
	RBoost	4.57**	4.69**	4.69**	4.76**	4.97**	5.17**	5.23**	5.36**	5.49**	5.57**
	ARank	4.37**	4.66**	4.76**	4.90**	5.06**	5.20*	5.33**	5.47**	5.59**	5.67**
	LRank	4.38**	4.61**	4.74**	4.86**	5.07**	5.25**	5.42**	5.42**	5.67**	5.78**
	LNet	4.30**	4.59**	4.78**	4.99**	5.16**	5.35**	5.49**	5.61**	5.63**	5.63**
	MART	4.62	4.72**	4.86**	5.04**	5.26**	5.47**	5.47**	5.64**	5.74**	5.86**
	LMART	4.46*	4.54**	4.73**	5.10**	5.31**	5.56**	5.75**	5.90*	6.01**	6.14**
	SVM	4.41**	4.54**	4.76**	4.77**	4.95**	5.16**	5.34**	5.50**	5.64**	5.77**
Purchase	LR	4.29**	4.65**	4.65**	4.69**	4.74**	4.81*	4.94**	4.97**	5.11**	5.11**
	RM	4.52**	4.82**	4.86**	5.02**	5.18**	5.33*	5.50**	5.66**	5.79**	5.92**
Both	WT	4.52**	4.69**	4.80**	4.85**	5.01**	5.07**	5.23**	5.32**	5.35**	5.41**
	LMRM	4.42**	4.50**	4.72**	5.08**	5.23**	5.41**	5.57**	5.60**	5.73**	5.85**
	LETORIF	4.58**	4.90	5.08	5.47	5.64	5.85	6.02	6.19	6.40	6.54

Symbol * indicates that the method is outperformed by the best one by 0.05 statistical significance level, ** indicates 0.01.

Optimizing Gross-Merchandise-Value (GMV) in E-commerce Search

- This work is about optimizing GMV in Session
 - . How about long-term GMV?
 - . How about other discovery?

• • •

• First step in optimizing user engagements in E-commerce search.

Al in E-commerce

Al in E-commerce at Etsy

- Multi-modal Deep-learning based Search Solution (KDD 2016)
- Probabilistic Graphical Model based Personalization Recommendation (KDD 2014)
- Ensemble Learning based CTR Prediction Solution (AdKDD 2017/KDD 2017)
- Buzzsaw: A System for High Speed Feature Engineering (SysML 2018)

Thanks!