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Why we need GB-CENT

Two Families of Powerful Practical Data Mining and Machine Learning Tools

e Tree-based Models
Decision Trees, Random Forest, Gradient Boosted Decision Trees...

* Matrix-based Embedding Models
Matrix Factorization, Factorization Machines...



Why we need GB-CENT: Tree-based Models
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Why we need GB-CENT: Embedding-based Models

* Pros:
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Why we need GB-CENT

In practice,
 We have both numerical features and categorical features.

* We need to utilize both models.
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What is GB-CENT

In a nutshell, GB-CENT is to combine

* Tree-based Models
Handle numerical features...

 Matrix-based Embedding Models
Handle large-cardinality categorical features...



What is GB-CENT
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Two Ingredients:
 Factorization Machines without Numerical Features

 GBDT without Categorical Features
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A prediction is based on:
» Bias terms from each categorical feature

* Dot-product of embedding features of two categorical features
e.g., user-side v.s. item-side

* Per-categorical decision trees based on numerical features
ensemble of numerical decision trees where each tree is based on one categorical feature
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Different from GBDT:

 The number of trees in GB-CENT depends on the cardinality of categorical features in the data set, while
GBDT has a pre-specified number of trees M.

« Each tree in GB-CENT only takes numerical features as input while GBDT takes in both categorical and
numerical features.

* Learning a tree for GBDT uses all N instances in the data set while the tree for a categorical feature in GB-
CENT only involves its supporting instances.



What is GB-CENT
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Training GB-CENT:
* Train embedding part firstly

 Train GBDT part secondly
Sort categorical features by their support and fit trees by that order
Use a validation set to see whether to stop
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How does GB-CENT perform

 Datasets
MovielLens: 240K users, 33K movies, 22M instances, 5 ratings
RedHat: 151K customers, 7 categories, 2M instances, binary response

 Baselines
GB-CENT variants: CAT-E, CAT-NT, GB-CENT
GBDT variants: GBDT-OH, GBDT-CE
FM variants: FM-S, FM-D
SVDFeature variants: SVDFeature-S, SVDFeature-D

* Metrics
AUC, Accuracy, Time (Empirically)



How does GB-CENT perform

Data Set Metric GBDT-0H GBDT-CE SVDFeature-S SVDFeature-D FM-S FM-D CAT-E CAT-NT
0.883 0.863 0.877 0.867 0.913 0.888 0.886 0.900
MovieLens RMSE (0.007) (0.006) (0.009) (0.006) (0.024) (0.005) (0.011) (0.006)
-%;1.8 —0—‘7&0.4 -%_1.1 —I—%_0.0 -9%5.3 —%_2.4 -%2.1 -9%3.8
Time (s) 282 1034 68 66 73 60 77 o4
+1.08 +6.65 -9%49.6 -9%51.1 -%45.9 -$55.5 -%42.9 -9%60.0
0.955 0.981 0.975 0.976 0.986 0.987 0.967 0.942
RedHat AUC (0.0005) (0.0003) (0.0002) (0.0003) (0.0009) (0.0003) (0.0002) (0.0006)
-9%3.6 -9%1.0 -9%1.6 -%1.5 -9%0.5 -9%0.4 -9%2.4 -%4.9
Time (s) 85 3140 130 241 204 181 561 08
+%35.8 +3.97 -9%79.3 -%61.8 -%67.6 -9%71.3 -%11.0 %84 .4




How does GB-CENT perform

Table 3: The effect of minTreeSupport and max- Table 4: The effect of tree regularization on
TreeDepth on MovieLens data set. minTreeSupport MovieLLens data set. minTreeSupport=50, max-
is held to be 50 when varying maxTreeDepth; max- TreeDepth=3.
TreeDepth is held to be 3 when varying minTreeSup- Regulariza-| minTree- Number of RMSE
pox.'t. tion Gain Accepted

minTree- RMSE maxTree- RMSE

Support Depth Trees

10 0,900 5 0901 AAT N.A. 7926 0.905

50 0.906 3 0.906 0 7606 0.906

100 0.917 5 0.918 1 7559 0.9135

200 0.925 8 0.924 VSLR 3 7441 0.921

300 0.936 10 0.929 5! 6737 0.928

400 0.943 15 0.950 8 6375 0.945

Main takeaway: Learn many shallow small trees




How does GB-CENT perform

imdbVotes <= 36910.5
mse =0.1816
samples = 549
value = 0.059

Tru:/
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runTime <= 131.5

mse =0.1615

samples = 164
value =-0.0917

year <= 1989.5
mse =0.1763

samples = 385
value =0.1232

e
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mse = 0.1491
samples = 143
value =-0.1393

mse = 0.1257
samples = 21
value =0.2324

r O\

mse = 0.1287
samples = 124
value = 0.2366

mse = 0.1899
samples = 261
value = 0.0694




Summary

GB-CENT
« Combine Factorization Machines and GBDT together
 Combine interpretable results and high predictive power

* Achieve high performance in real-world datasets
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