A Gradient-based Framework for Personalization

November 10, 2017

Liangjie Hong Head of Data Science, Etsy Inc.

Liangjie Hong

- Head of Data Science
 - Etsy Inc. in NYC, NY (2016. Present)
 - Search & Discovery; Personalization and Recommendation; Computational Advertising
- Senior Manager of Research
 - Yahoo Research in Sunnyvale, CA (2013 2016)
 Leading science efforts for personalization and search sciences
- Published papers in SIGIR, WWW, KDD, CIKM, AAAI, WSDM, RecSys and ICML
- WWW 2011 Best Poster Paper Award
 WSDM 2013 Best Paper Nominated
 RecSys 2014 Best Paper Award
- Program committee members in KDD, WWW, SIGIR, WSDM, AAAI, EMNLP, ICWSM, ACL, CIKM, IJCAI and various journal reviewers
- PhD in Computer Science from Lehigh University (2013)

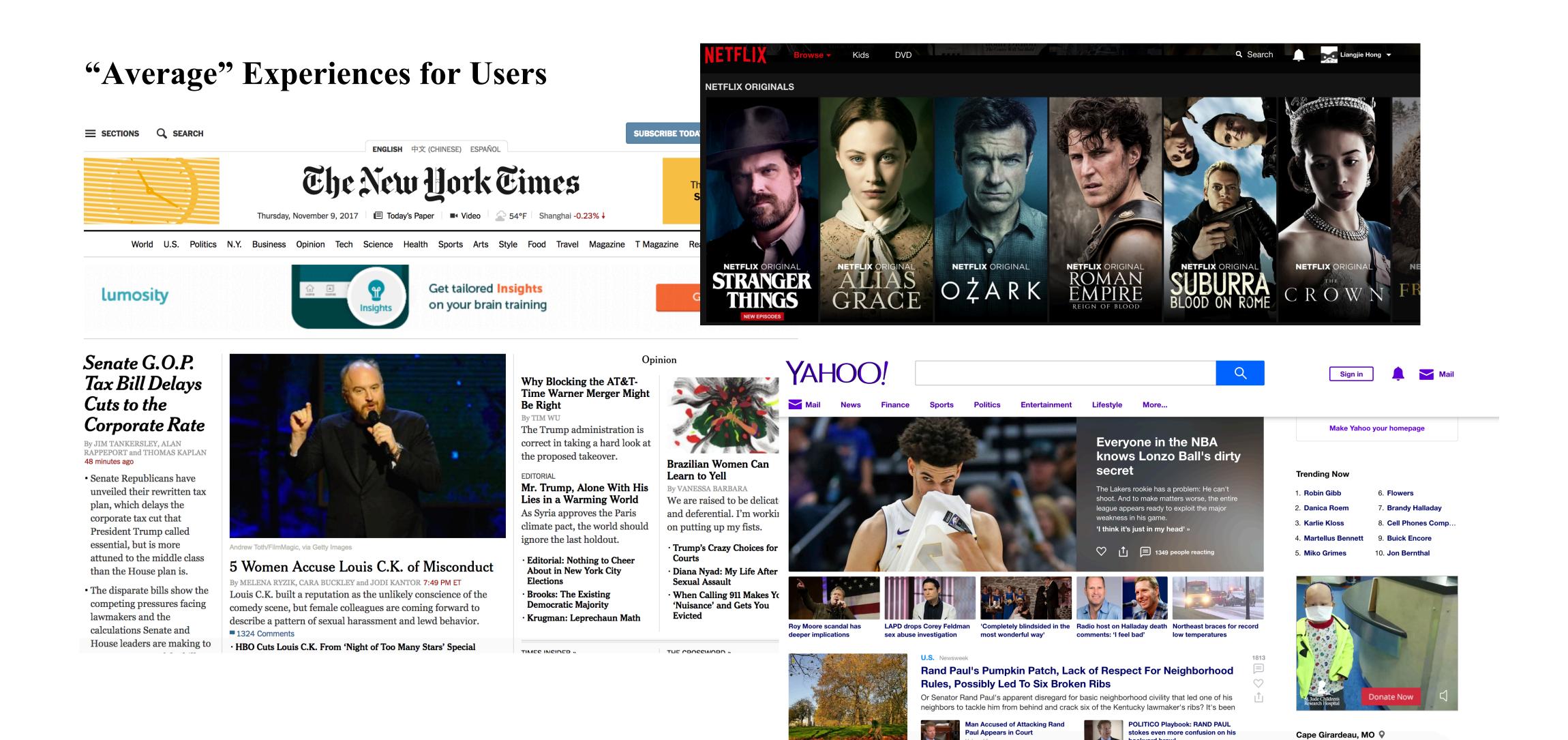
About This Paper

Authors

Yue Ning, PhD Student from Virginia Tech
Yue Shi, Research Scientist at Facebook
Liangjie Hong, Head of Data Science at Etsy Inc.
Huzefa Rangwala, Associate Professor at George Mason University
Naren Ramakrishnan, Professor at Virginia Tech

• Paper Venue
Full Research Paper in The 11th ACM Conference on Recommender Systems (RecSys'17)

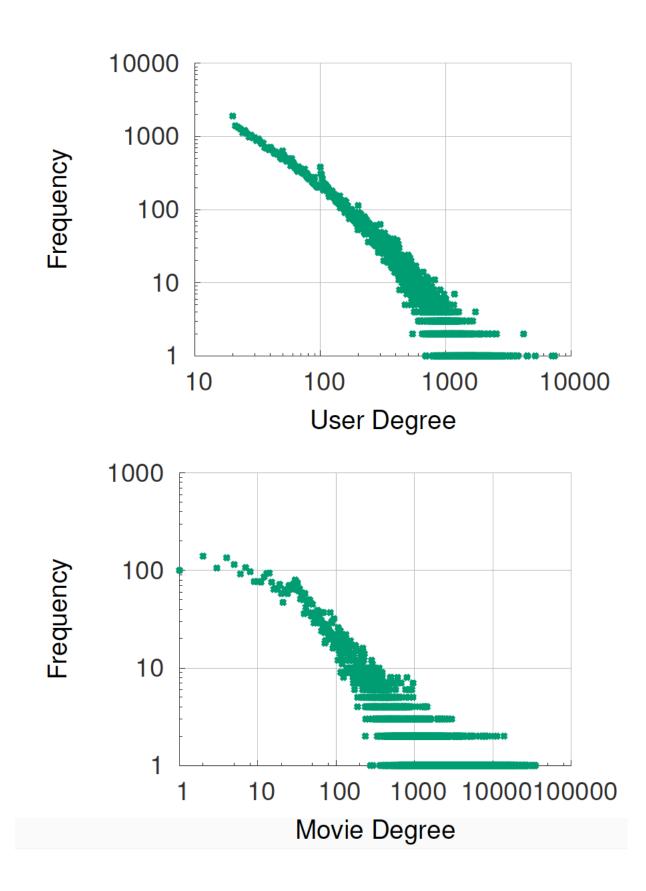
"Average" Experiences for Users



"Average" Experiences for Users

Log-log plot of the heavy-tail distribution of observations in MovieLens.

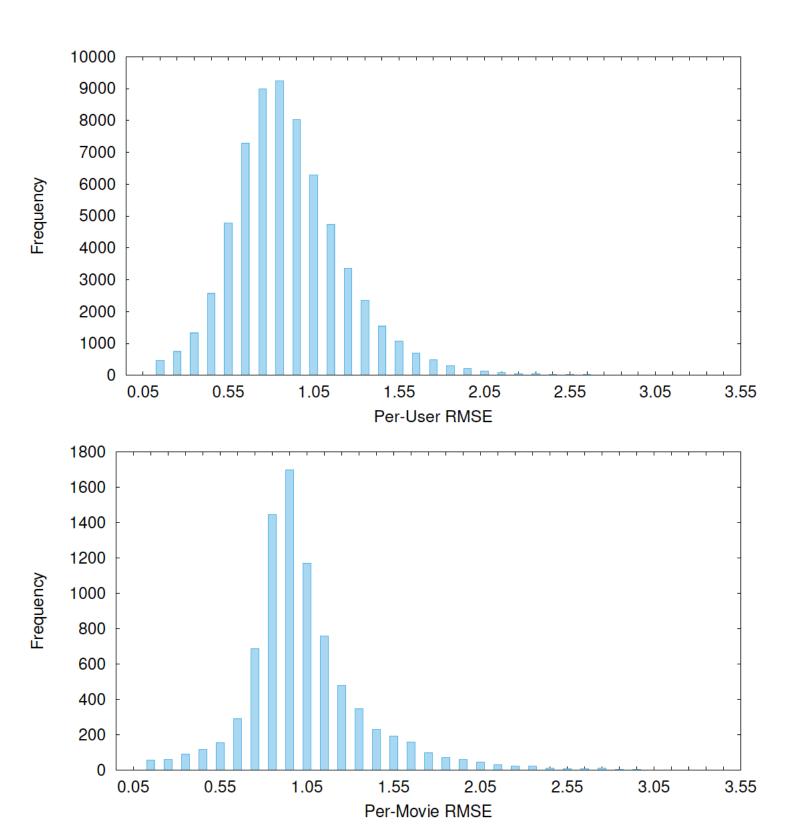
[Beutel et al. Beyond Globally Optimal: Focused Learning for Improved Recommendations. WWW 2017]



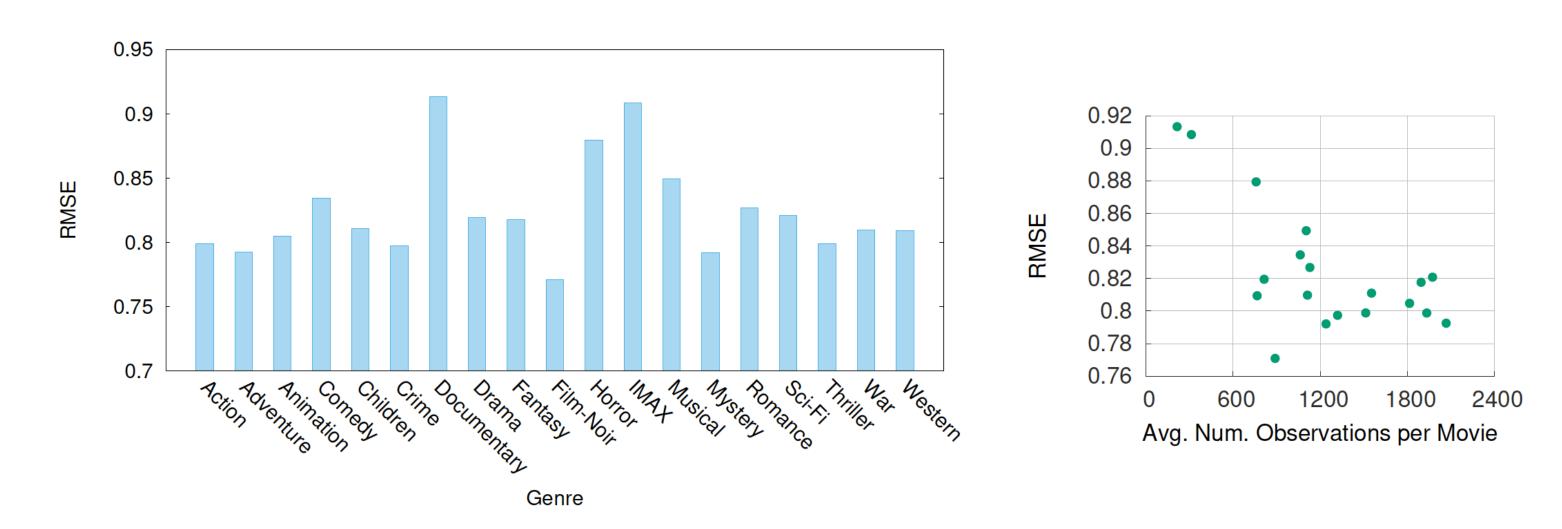
"Average" Experiences for Users

• Many users and movies are badly-modeled.

[Beutel et al. Beyond Globally Optimal: Focused Learning for Improved Recommendations. WWW 2017]



"Average" Experiences for Users



• In a standard model, we observe that (a) some genres are modeled significantly better than others for the MovieLens data, and (b) these patterns do not just follow number of observations (degree).

"Average" Experiences for Users

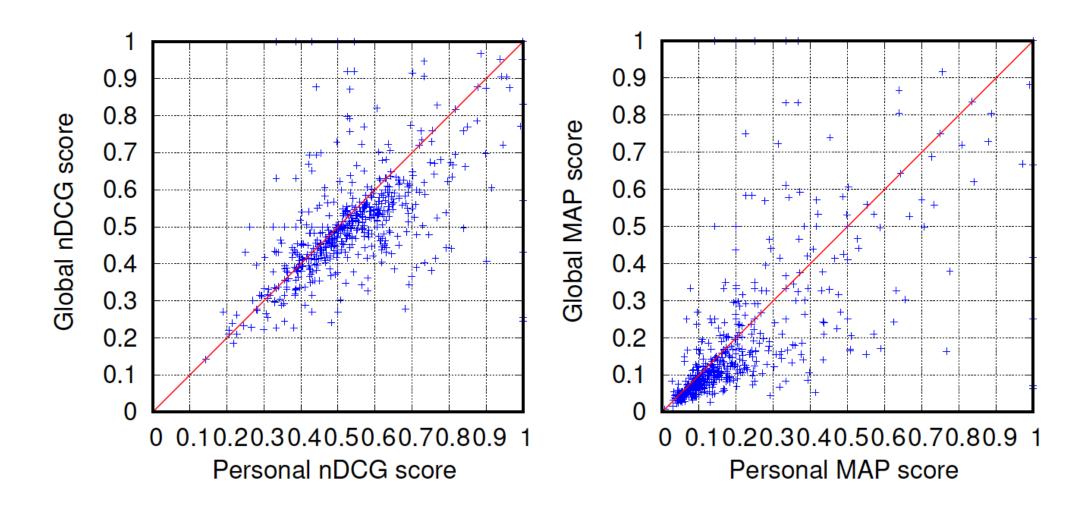


Figure 1: An example of global and personal models. Left figure showcases the nDCG score of users from global (y-axis) and personal (x-axis) models. (Right: MAP score).

"Average" Experiences for Users

Factorization Machines

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^n w_i \, x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \mathbf{v}_i, \mathbf{v}_j \rangle \, x_i \, x_j$$

[Steffen Rendle. Factorization Machines. ICDM 2010]

"Average" Experiences for Users

[Beutel et al. Beyond Globally Optimal: Focused Learning for Improved Recommendations. WWW 2017]

Theorem 1 (Global optimal not locally optimal). For dataset \mathcal{R} and loss function $\mathcal{L}_{\mathcal{R}}(\mathcal{M}_{\theta})$ with optimal parameters θ^* and $\mathcal{L}_{\mathcal{R}}(\mathcal{M}_{\theta^*}) > 0$; there exists $\mathcal{R}' \subset \mathcal{R}$ such that θ^* is not the optimal solution to $\mathcal{L}_{\mathcal{R}'}(\mathcal{M}_{\theta})$.

• Lack of A Generic Framework for Personalization

Beutel et al. Beyond Globally Optimal: Focused Learning for Improved Recommendations. WWW 2017. Zhang et al. Generalized Linear Mixed Models For Large-Scale Response Prediction. KDD 2016. Miao et al. Distributed Personalization. KDD 2015.

• Distributed Model Learning Requires Accessing Global Data

Bikash Joshi et al. Asynchronous Distributed Matrix Factorization with Similar User and Item Based Regularization. RecSys 2016.

Miao et al. Distributed Personalization. KDD 2015.

- "Average" Experiences for Users
- Lack of A Generic Framework for Personalization
- Distributed Model Learning Requires Accessing Global Data

Proposed Framework

Assumptions

- o The global model and personal models share the same structure of objective functions.
- o The model can be optimized through gradient methods.

Intuitions

- O When data is abundant, use personal data as much as possible.
- O When data is sparse, use global data as much as possible.
- o Personal models are *embarrassingly* parallelizable.

High Level Steps

- o Split users into groups where each group represents different level of data abundance/sparsity.
- o Train a global model and save gradients.
- o According to the user group, select how much global gradients to borrow, train personal models.

System Framework

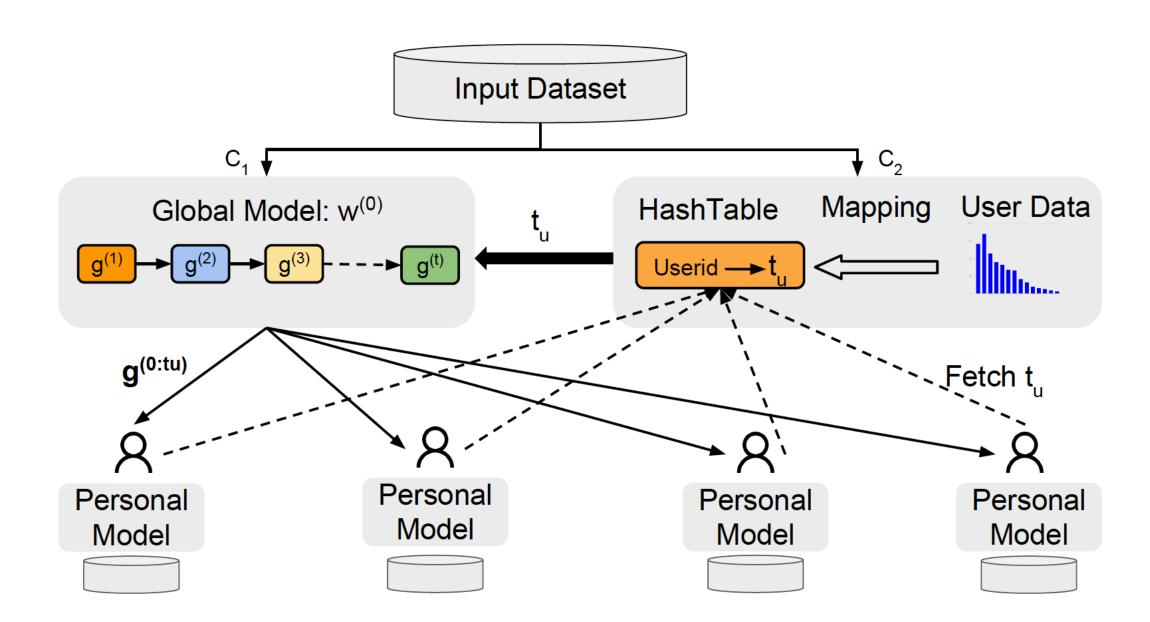


Figure 2: System Framework. Component C_1 trains a global model. Component C_2 generates a hashtable based on users' data distribution. Users request t_u from C_2 and C_1 returns a subsequence of gradients $g^{(0:t_u)}$ to users.

System Framework

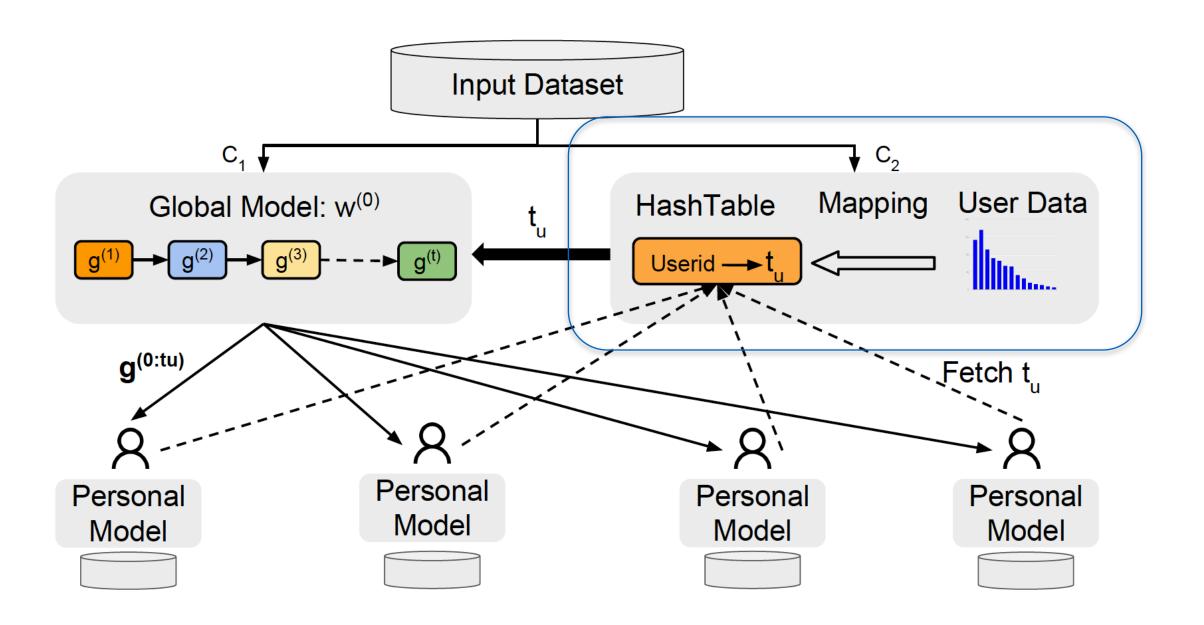


Figure 2: System Framework. Component C_1 trains a global model. Component C_2 generates a hashtable based on users' data distribution. Users request t_u from C_2 and C_1 returns a subsequence of gradients $g^{(0:t_u)}$ to users.

System Framework

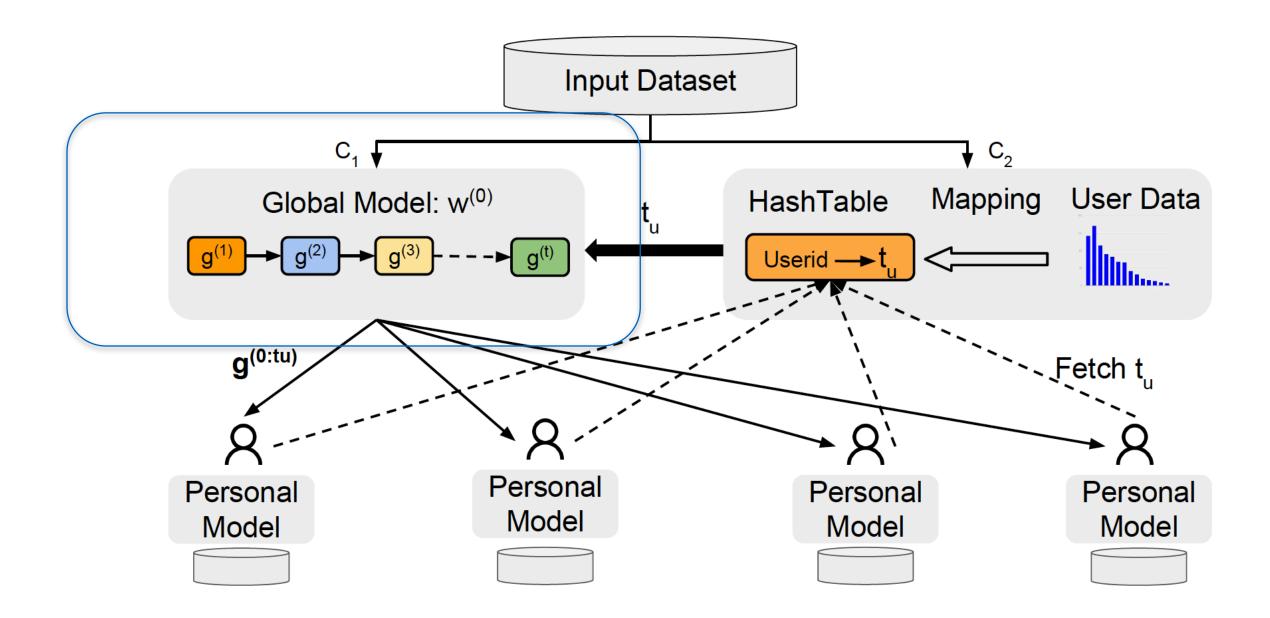


Figure 2: System Framework. Component C_1 trains a global model. Component C_2 generates a hashtable based on users' data distribution. Users request t_u from C_2 and C_1 returns a subsequence of gradients $g^{(0:t_u)}$ to users.

How do we map users to the group?

Algorithm 3.1 Coordination Algorithm

```
1: input: C (#Groups), (|D_0|, |D_1|, ..., |D_U|), g^{(0)}, g^{(1)}, ..., g^{(T)}
 2: output: f(u, |D_u|) \rightarrow t_u
 3: procedure Scheduler
         t_1, ..., t_u, ..., t_{|\mathcal{U}|} = 0, u \in \mathcal{U}
          d_0, d_1, ..., d_U = \log |D_0|, \log |D_1|, ..., \log |D_U|
          Sort (d_0, d_1, ..., d_U) in non-ascending order.
          d_{\max} = \max(d_0, d_1, ..., d_U)
          d_{\min} = \min(d_0, d_1, ..., d_U)
         s = \frac{d_{\text{max}} - d_{\text{min}}}{C}
          for u \in \mathcal{U} do
10:
               for i \in [1, C] do
                     if d_u \in [d_{\min} + i * s, d_{\min} + (i + 1) * s] then
         p_u = \frac{i}{C}; \ t_u = \lfloor T * p_u \rfloor; \text{break}
return \{t_u\}, u \in \mathcal{U}
13:
```

How do we map users to the group?

Algorithm 3.1 Coordination Algorithm

```
1: input: C (#Groups), (|D_0|, |D_1|, ..., |D_U|), g^{(0)}, g^{(1)}, ..., g^{(T)}
 2: output: f(u, |D_u|) \rightarrow t_u
 3: procedure Scheduler
          t_1, ..., t_u, ..., t_{|\mathcal{U}|} = 0, u \in \mathcal{U}
         d_0, d_1, ..., d_U = \log |D_0|, \log |D_1|, ..., \log |D_U|
           Sort (d_0, d_1, ..., d_U) in non-ascending order.
          d_{\max} = \max(d_0, d_1, ..., d_U)
          d_{\min} = \min(d_0, d_1, ..., d_U)
          s = \frac{d_{\text{max}} - d_{\text{min}}}{C}
 9:
           for u \in \mathcal{U} do
10:
                for i \in [1, C] do
                      if d_u \in [d_{\min} + i * s, d_{\min} + (i + 1) * s] then
         p_{u} = \frac{\overline{i}}{C}; \ t_{u} = \lfloor T * p_{u} \rfloor; \text{break}
\mathbf{return} \ \{t_{u}\}, u \in \mathcal{U}
13:
```

Adaptation Mechanism

Global update \rightarrow

$$m{ heta}^{(T)} = m{ heta}^{(0)} - \eta \sum_{t=1}^{T} g^{(t)}(m{ heta})$$

Local update \rightarrow

$$\widetilde{\theta}_{u} = \theta^{(0)} - \eta_{1} \sum_{t=1}^{t_{u}-1} g^{(t)}(\theta) - \eta_{2} \sum_{t=t_{u}}^{T} g^{(t)}(\theta_{u})$$

- \blacktriangleright θ : the global model parameter.
- \triangleright θ_{u} : the personal model parameter.
- \triangleright *u*: the index for one user.
- ightharpoonup: the index of global gradients for user u.
- $ightharpoonup g^{(t)}(\theta)$: global gradients
- $ightharpoonup g^{(t)}(\theta_u)$: personal gradients

Adaptive Logistic Regression

Objective:

$$\min_{\mathbf{w}} L(\mathbf{w}) = f(\mathbf{w}) + \lambda r(\mathbf{w}) \tag{1}$$

- $ightharpoonup f(\mathbf{w})$ is the negative log-likelihood.
- $ightharpoonup r(\mathbf{w})$ is a regularization function.

Adaptation Procedure:

ightharpoonup Global update ightarrow

$$\widetilde{\mathbf{w}}_{u}^{(0)} = \mathbf{w}^{(0)} - \eta_1 \sum_{t=1}^{t_u-1} g^{(t)}(\mathbf{w})$$
 (2)

► Local update →

$$\widetilde{\mathbf{w}}_{u}^{(T)} = \widetilde{\mathbf{w}}_{u}^{(0)} - \eta_{2} \sum_{t=1}^{T-t_{u}} g^{(t)}(\mathbf{w}_{u})$$

$$(3)$$

Adaptive Gradient Boosting Decision Tree

Objective:

$$L^{(t)} = \sum_{d}^{N} I(y_d, F_d^{(t-1)} + \rho h^{(t)}) + \Omega(h^{(t)})$$

$$= \sum_{d}^{N} I(y_d, F_d^{(0)} + \rho h^{(0:t)}) + \Omega(h^{(t)})$$
(4)

Adaptation Procedure:

$$\widetilde{F}_{u}^{(0)} = F^{(0)} + \rho h^{(0:t_{u})} \tag{5}$$

$$\widetilde{F}_u^{(T)} = \widetilde{F}_u^{(0)} + \rho h_u^{(t_u:T)} \tag{6}$$

Adaptive Matrix Factorization

Objective:

$$\min_{\mathbf{q}_{*}, p_{*}, b_{*}} \sum_{u,i} (r_{ui} - \mu - b_{u} - b_{i} - \mathbf{q}_{u}^{T} \mathbf{p}_{i})
+ \lambda(||\mathbf{q}_{u}||^{2} + ||\mathbf{p}_{i}||^{2} + b_{u}^{2} + b_{i}^{2})$$
(7)

Adaptation Procedure:

$$\widetilde{\mathbf{q}}_{u}^{(0)} = \mathbf{q}_{u}^{(0)} - \eta_{1} \sum_{t=0}^{t_{u}} g^{(t)}(\mathbf{q}_{u}), \widetilde{\mathbf{q}}_{u}^{(T)} = \widetilde{\mathbf{q}}_{u}^{(0)} - \eta_{2} \sum_{t=0}^{T-t_{u}} g^{(t)}(\widetilde{\mathbf{q}}_{u})$$
(8)

$$\widetilde{b}_{u}^{(0)} = b_{u}^{(0)} - \eta_{1} \sum_{k=0}^{t_{u}} g^{(t)}(b_{|u}), \widetilde{b}_{u}^{(T)} = \widetilde{b}_{u}^{(0)} - \eta_{2} \sum_{t=0}^{T-t_{u}} g^{(t)}(\widetilde{b}_{u}) \quad (9)$$

Properties

- ► **Generality**: The framework is generic to a variety of machine learning models that can be optimized by gradient-based approaches.
- ► **Extensibility**: The framework is extensible to be used for more sophisticated use cases.
- ➤ **Scalability**: In this framework, the training process of a personal model for one user is independent of all the other users.

Datasets

Table: Dataset Statistics

News Portal				
# users	54845			
# features	351	Movie Ratings		
# click events	2,378,918		Netflix	Movielens
# view events	26,916,620	# users	478920	1721
avg # click events per user	43	# items	17766	3331
avg # events per user	534	sparsity	0.00942	0.039

- ► For LogReg and GBDT: News Portal dataset
- ► For Matrix Factorization: Movie rating datasets (Netflix, Movielens)

Metrics

- ► MAP: Mean Average Precision.
- ► MRR: Mean Reciprocal Rank.
- ► AUC: Area Under (ROC) Curve.
- ▶ nDCG: Normalized Discounted Cumulative Gain.
- ► RMSE: Root Mean Square Error
- ► MAE: Mean Absolute Error

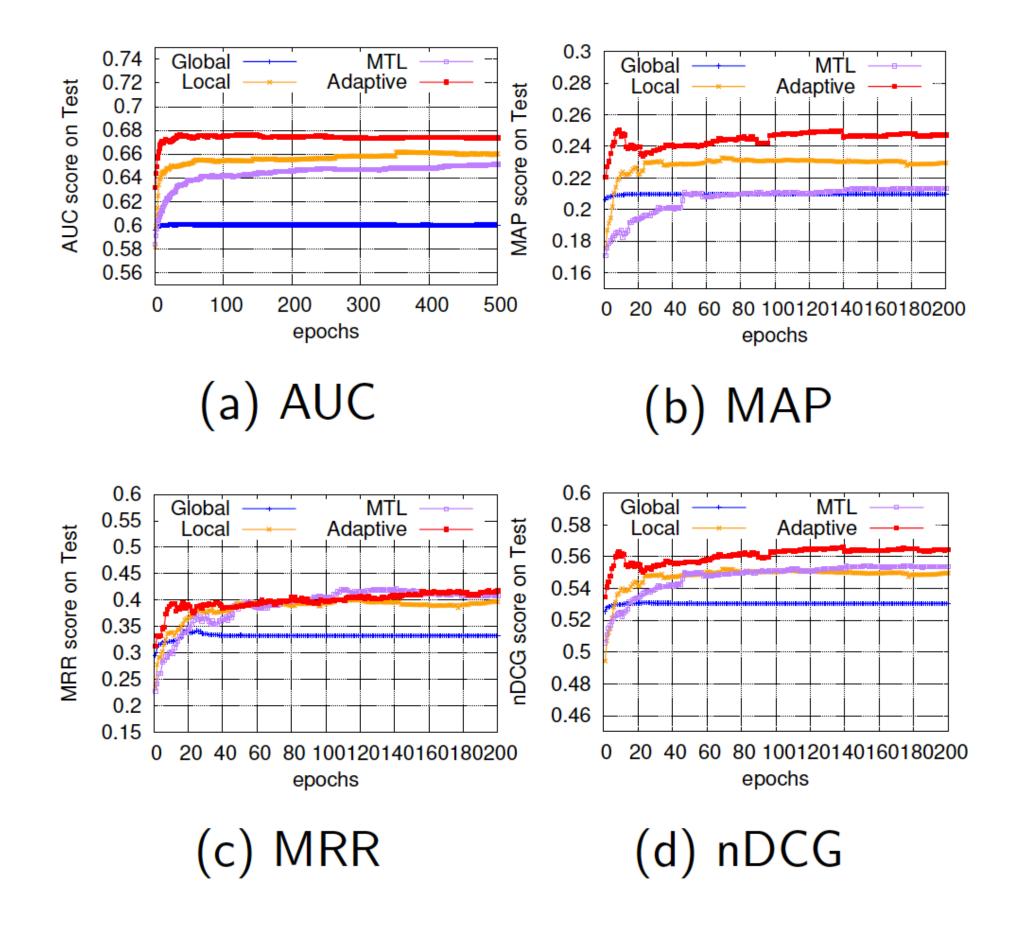
Comparison Methods

Table: Objective functions for different methods.

Model	LogReg
Global	$\sum_{d=1}^{N} f(\mathbf{w}) + \lambda \mathbf{w} _2^2$
Local	$\sum_{j=1}^{N_u} f(\mathbf{w}_u) + \lambda \mathbf{w}_u _2^2$
MTL	$\sum_{j}^{N_u} f(\mathbf{w}_u) + \frac{\lambda_1}{2} \mathbf{w}_u - \mathbf{w} ^2 + \frac{\lambda_2}{2} \mathbf{w}_u ^2$
Model	GBDT
Global	$\frac{\sum_{d}^{N} I(y_d, F_d^{(0)} + \rho h^{(0:t)}) + \Omega(h^{(t)})}{\sum_{j}^{N_u} I(y_j, F_j^{(0)} + \rho h^{(0:t)}) + \Omega(h^{(t)})}$
Local	$\sum_{i}^{N_u} I(y_j, F_i^{(0)} + \rho h^{(0:t)}) + \Omega(h^{(t)})$
MTL	_
Model	MF
Global	$\sum_{u,i} (r_{ui} - \mu - b_u - b_i - \mathbf{q}_u^T \mathbf{p}_i) + \lambda(\mathbf{q}_u ^2 + \mathbf{p}_i ^2 + b_u^2 + b_i^2)$
Local	$\sum_{i\in N_u} (r_{ui} - \mu - \widetilde{b}_u - \widetilde{b}_i - \widetilde{\mathbf{q}}_u^T \widetilde{\mathbf{p}}_i) + \lambda(\widetilde{\mathbf{q}}_u ^2 + \widetilde{\mathbf{p}}_i ^2 + \widetilde{b}_u^2 + \widetilde{b}_i^2)$
MTL	global $+\lambda_2[(\mathbf{q}_u-\mathbf{q})^2+(\mathbf{p}_i-\mathbf{p})^2+(b_u-A_u)^2+(b_i-A_i)^2]$

- ► Global: models are trained on all users' data
- ► Local: models are learned locally on per user's data
- ► MTL: users models are averaged by a global parameter.

Ranking Performance – Logistic Regression



- ► AUC, MAP, MRR and nDCG scores on the test dataset with varying training epochs.
- ► The proposed adaptive LogReg models achieve higher scores with fewer epochs.
- Global models perform the worst.

Ranking Performance – GBDT

Table: Performance comparison based on MAP, MRR, AUC and nDCG for GBDT. Each value is calculated from the average of 10 runs with standard deviation.

	Global-GBDT					
#Trees	MAP	MRR	AUC	nDCG		
20	0.2094(1e-3)	0.3617(2e-3)	0.6290(1e-3)	0.5329(6e-4)		
50	0.2137(1e-3)	0.3726(1e-3)	0.6341(1e-3)	0.5372(6e-4)		
100	0.2150(8e-3)	0.3769(1e-3)	0.6356(8e-4)	0.5392(6e-4)		
200	0.2161(5e-4)	0.3848(1e-3)	0.6412(6e-4)	0.5415(5e-4)		
	Local-GBDT					
#Trees	MAP	MRR	AUC	nDCG		
20	0.2262(2e-3)	0.4510(5e-3)	0.6344(3e-3)	0.5604(2e-3)		
50	0.2319(2e-3)	0.4446(4e-3)	0.6505(2e-3)	0.5651(2e-3)		
100	0.2328(1e-3)	0.4465(5e-3)	0.6558(2e-3)	0.5651(2e-3)		
200	0.2322(2e-3)	0.4431(2e-3)	0.6566(1e-3)	0.5649(1e-3)		
	Adaptive-GBDT					
#Trees	MAP	MRR	AUC	nDCG		
20 + 50	0.2343 (2e-3)	0.4474(4e-3)	0.6555(2e-3)	0.5661(2e-3)		
50 + 50	0.2325(2e-3)	0.4472(1e-4)	0.6561(8e-4)	0.5666 (6e-4)		
10 + 100	0.2329(2e-3)	0.4423(3e-3)	0.6587 (1e-3)	0.5650(3e-3)		

Ranking Performance – GBDT

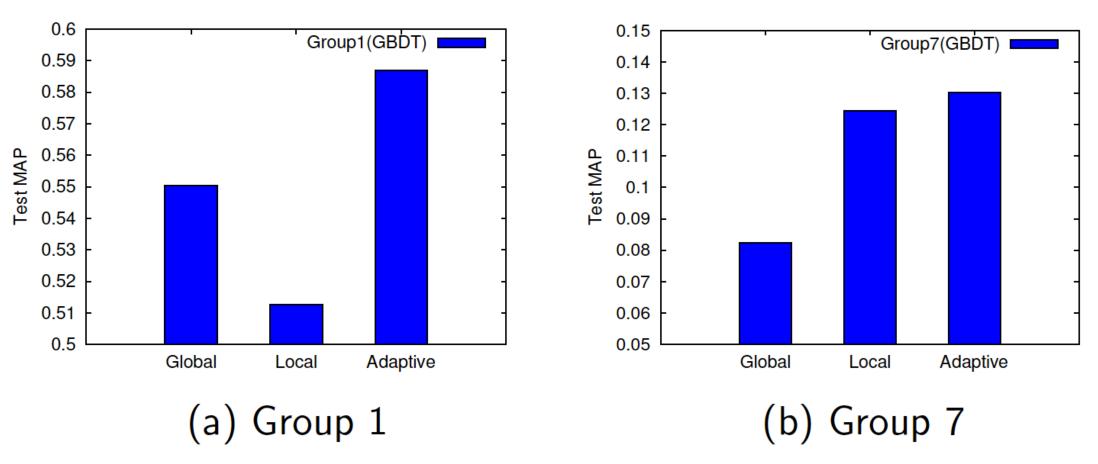
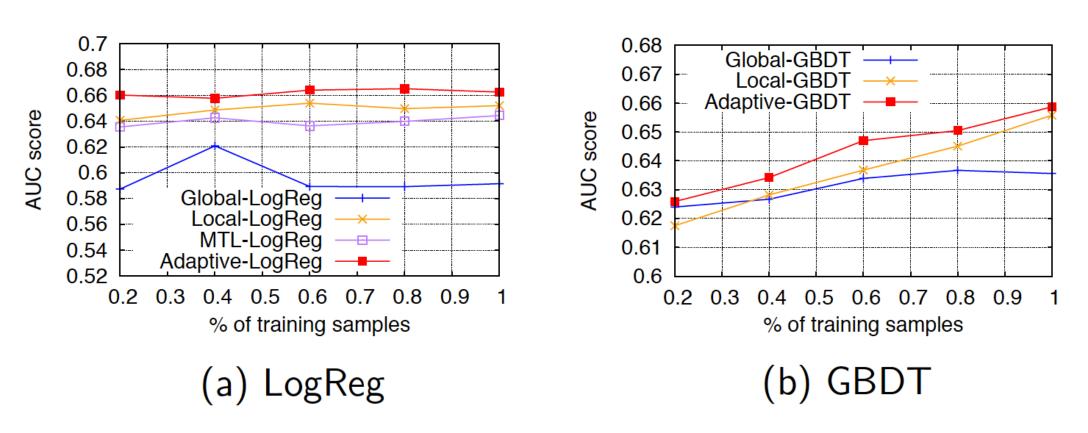


Figure: MAP Comparison of Group 1 (least) and Group 7 (most) for GBDT methods.

- ► MAP score for the groups of users with least data (Group 1) and most data (Group 7) for GBDT models.
- ► Adaptive-GBDT *outperform* both global and local GBDT models in terms of MAP for all groups of users.

Experiments

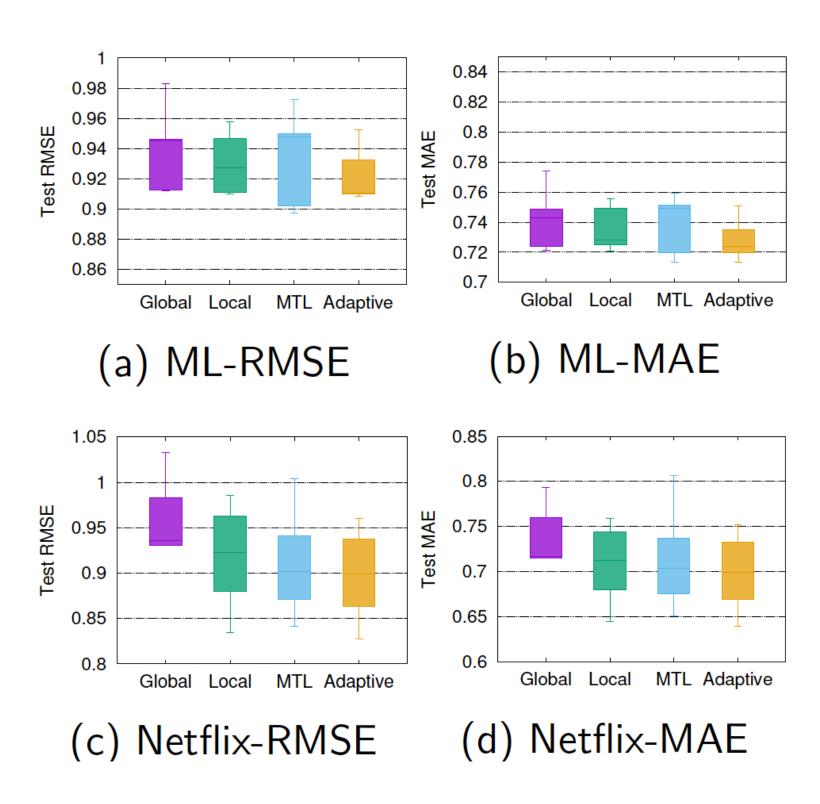
Ranking Performance – Logistic Regression v.s. GBDT



- ► AUC score for Global-GBDT, Local-GBDT, and Adaptive-GBDT with # of training samples from 20% to 100%.
- On average of AUC, Adaptive-GBDT performs better than other methods.
- ► With the increase of training samples, GBDT based methods tend to perform better while LogReg methods achieve relatively stable scores.

Experiments

Results – Matrix Factorization



- RMSE and MAE on MovieLens(ML) and Netflix datasets.
- ► The quartile analysis of the group level RMSE and MAE for different MF models.
- ► Gold: Adaptive-MF

Summary

- ► Effectively and efficiently build personal models that lead to improved recommendation performance over either the global model or the local model.
- Adaptively learn personal models by exploiting the global gradients according to individuals characteristic.
- Our experiments demonstrate the usefulness of our framework across a wide scope, in terms of both model classes and application domains.

Future Work

- Learning adaptation or more intelligent adaptation
- Extend to deep models
- Extend to heterogeneous models

Etsy

Etsy – A Global Marketplace

Artifact Bags
Omaha, NE
Photo by: Dana Damewood and Jackie Sterba

Clap Clap
Los Angeles, CA
Photo by: Bert Youn and Mimi Kim

redravenstudios
Pittsburgh, PA
Photo by: Janelle Bendyck

Little Hero Capes

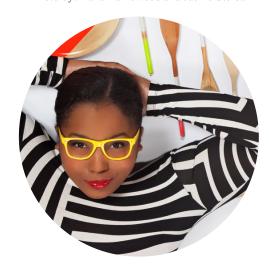
Somerset, MA

Photo by: Rich Vintage Photography

Cattails Woodwork
Hermitage, PE, Canada
Photo by: Cattails Woodwork

Room for Emptiness
Berlin, Germany
Photo by: Room for Emptiness

sukrachand Brooklyn, NY Photo by: sukrachand



Nicole Porter Design
Saint Paul, MN
Photo by: Nicole Porter Design

noemiah
Montreal, QC, Canada

Lorgie
Fremantle, WA, Australia
Photo by: Lorgie

Jeremiah Collection San Francisco, CA Photo by: Matthew Reamer

Docksmith
Brunswick, ME
Photo by: Docksmith

purlBKnit Brooklyn, NY Photo by: purlBKnit

Julia Astreou Nicosia, Cyprus Photo by: Panagiotis Mina

Moira K. Lime Omaha, NE Photo by: Moira K. Lime

Nested Yellow
Portland, OR
Photo by: Jessica Dremov and Nested Yellow

Habitables
Madrid, Spain
Photo by: Habitables

Woodstorming
Kaunas, Lithuania
Photo by: Ilona & Martynas from Instudija

karoArt
Dublin, Ireland
Photo by: Christine Burns

ADIKILAV

Jerusalem, Israel

Photo by: Shlomit Koslowe

My A La Mode Boutique

Ecuador
Photo by: My A La Mode Boutique

By The Numbers

1.6M active sellers

AS OF MARCH 31, 2016

25M active buyers

AS OF MARCH 31, 2016

\$2.39B
annual GMS
IN 2015

35+M items for sale

Work and Culture

852 employees around the world

AS OF MARCH 31, 2016

9
offices in 7 countries
AS OF MARCH 31, 2016

54%female employees 46%male employees

AS OF DECEMBER 31, 2015

Work and Culture

1.6M active sellers

AS OF MARCH 31, 2016

86%

of sellers are women

2014 ETSY SELLER SURVEY

95%

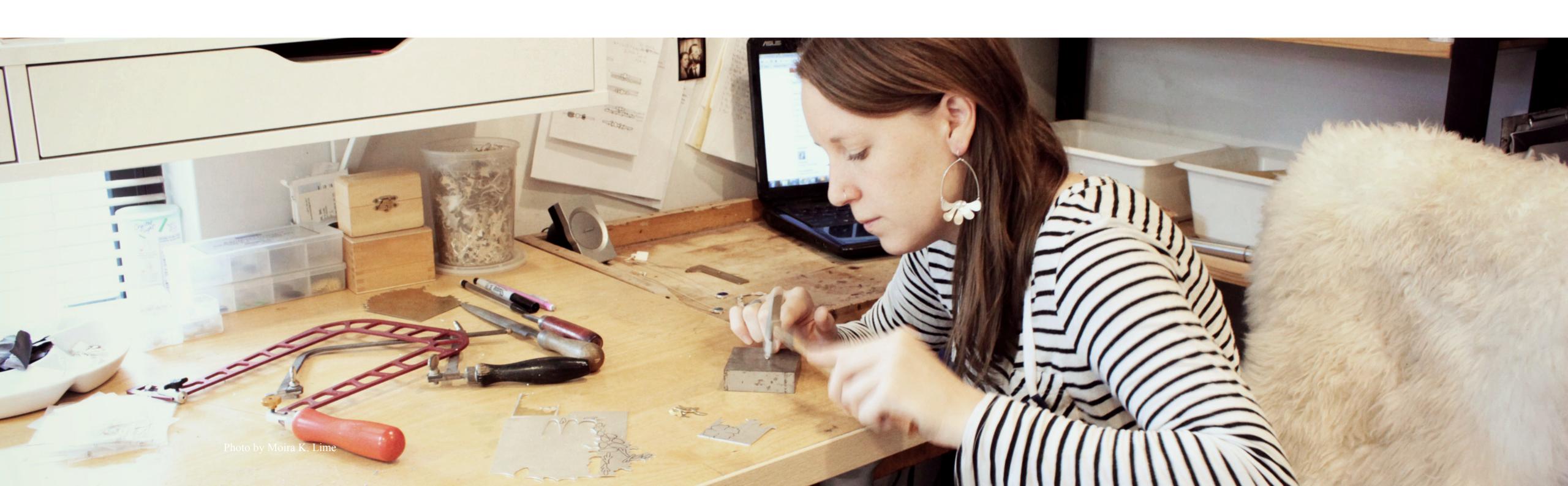
of sellers run
their Etsy shop
from home

2014 ETSY SELLER SURVEY

76%

consider their shop a business

2014 ETSY SELLER SURVEY



Passionate and Loyal Business Owners 30% 79%

focus on their creative businesses as their sole occupation

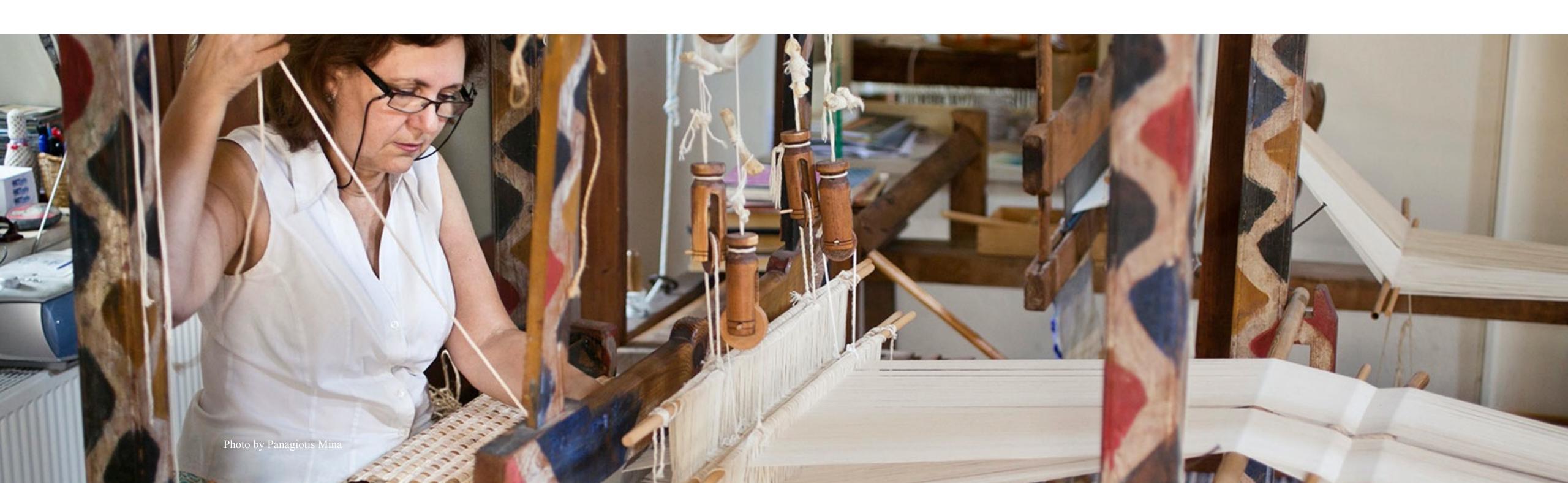
2014 ETSY SELLER SURVEY

started their Etsy shop as a way to supplement income

2014 ETSY SELLER SURVEY

started their Easy shop as an outlet for creativity

2014 ETSY SELLER SURVEY



Engaged and Thoughtful Buyer Base

25M active buyers

AS OF MARCH 31, 2016

87%

of Etsy buyers are women

2014 ETSY BUYER SURVEY

92%

of buyers agree Etsy offers products they can't find elsewhere

2014 ETSY BUYER SURVEY

AI in E-commerce

AI Challenges

For Buyers

• How to choose unique and satisfied products among millions?

How to lead and guide buyers to discover products that they wouldn't buy at the first place?

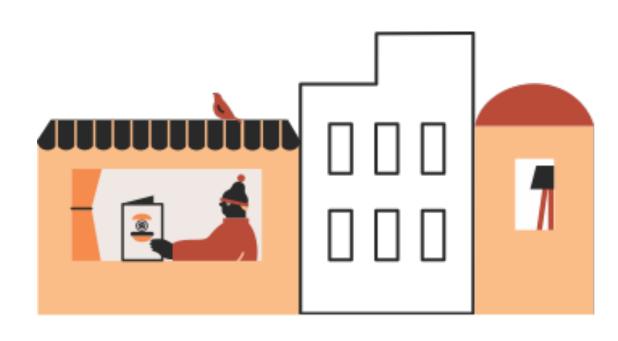
How to recommend appropriate products for different occasions?

For Sellers

How to reach larger audience and potential buyers?
 How to run advertising campaign more effectively?
 How to communicate with buyers through different channels?

For Platform

How to build a healthy platform?
 How to speed-up buyer and seller communication?



AI in E-commerce

AI Challenges

Search and Discovery

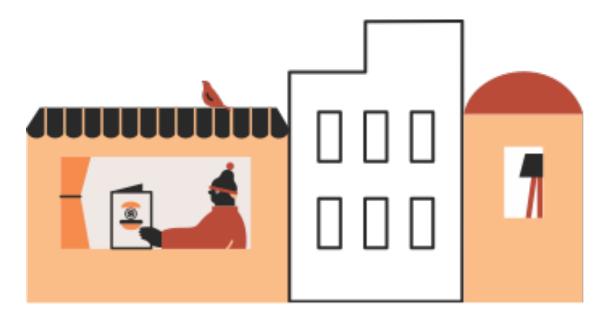
Query Modeling
User Intent Modeling
Learning to Rank

Personalization and Recommendation

User Profiling
Item Modeling
Recommender Ranking

Computational Advertising

Click-Through Rate Modeling
Conversion Rate Modeling
Bid Optimization



AI in E-commerce

AI in E-commerce at Etsy

- Multi-modal Deep-learning based Search Solution (KDD 2016)
- Probabilistic Graphical Model based Personalization Recommendation (KDD 2014)
- Ensemble Learning based CTR Prediction Solution (AdKDD 2017/KDD 2017)

Questions