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Challenges in Personalized Recommender Systems

“Average” Experiences for Users

• Log-log plot of the heavy-tail distribution of observations in 
MovieLens.

[Beutel et al. Beyond Globally Optimal: Focused Learning for Improved 
Recommendations. WWW 2017]



Challenges in Personalized Recommender Systems

“Average” Experiences for Users

• Many users and movies are badly-modeled.

[Beutel et al. Beyond Globally Optimal: Focused Learning for Improved 
Recommendations. WWW 2017]



Challenges in Personalized Recommender Systems

“Average” Experiences for Users

• In a standard model, we observe that (a) some genres are modeled significantly better than others for the 
MovieLens data, and (b) these patterns do not just follow number of observations (degree).

[Beutel et al. Beyond Globally Optimal: Focused Learning for Improved Recommendations. WWW 2017]
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Challenges in Personalized Recommender Systems

“Average” Experiences for Users

• Factorization Machines

[Steffen Rendle. Factorization Machines. ICDM 2010]



Challenges in Personalized Recommender Systems

“Average” Experiences for Users

[Beutel et al. Beyond Globally Optimal: Focused Learning for Improved Recommendations. WWW 
2017]



Challenges in Personalized Recommender Systems

• Lack of A Generic Framework for Personalization

Beutel et al. Beyond Globally Optimal: Focused Learning for Improved Recommendations. WWW 2017.
Zhang et al. Generalized Linear Mixed Models For Large-Scale Response Prediction. KDD 2016.
Miao et al. Distributed Personalization. KDD 2015.



Challenges in Personalized Recommender Systems

• Distributed Model Learning Requires Accessing Global Data

Bikash Joshi et al. Asynchronous Distributed Matrix Factorization with Similar User and Item Based 
Regularization. RecSys 2016.
Miao et al. Distributed Personalization. KDD 2015.



Challenges in Personalized Recommender Systems

• “Average” Experiences for Users

• Lack of A Generic Framework for Personalization

• Distributed Model Learning Requires Accessing Global Data
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A Gradient-based Adaptive Learning Framework

Assumptions

o The global model and personal models share the same structure of objective functions.

o The model can be optimized through gradient methods.



A Gradient-based Adaptive Learning Framework

Intuitions

o When data is abundant, use personal data as much as possible.

o When data is sparse, use global data as much as possible.

o Personal models are embarrassingly parallelizable.



A Gradient-based Adaptive Learning Framework

High Level Steps

o Split users into groups where each group represents different level of data abundance/sparsity.

o Train a global model and save gradients.

o According to the user group, select how much global gradients to borrow, train personal models.



A Gradient-based Adaptive Learning Framework

System Framework
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A Gradient-based Adaptive Learning Framework

How do we map users to the group?
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How do we map users to the group?



A Gradient-based Adaptive Learning Framework

Adaptation Mechanism



A Gradient-based Adaptive Learning Framework

Adaptive Logistic Regression



A Gradient-based Adaptive Learning Framework

Adaptive Gradient Boosting Decision Tree



A Gradient-based Adaptive Learning Framework

Adaptive Matrix Factorization



A Gradient-based Adaptive Learning Framework

Properties
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Experiments

Comparison Methods



Experiments

Ranking Performance – Logistic Regression
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Ranking Performance – GBDT 



Experiments

Ranking Performance – Logistic Regression v.s. GBDT



Experiments

Results – Matrix Factorization



Summary



Future Work

o Learning adaptation or more intelligent adaptation

o Extend to deep models

o Extend to heterogeneous models 
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By The Numbers

1.6M
active sellers

AS OF MARCH 31, 2016

25M
active buyers

AS OF MARCH 31, 2016

$2.39B
annual GMS

IN 2015

35+M
items for sale

AS OF MARCH 31, 2016
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Work and Culture
1.6M

active sellers
AS OF MARCH 31, 2016

86%
of sellers

are women
2014 ETSY SELLER SURVEY

95%
of sellers run

their Etsy shop 
from home
2014 ETSY SELLER SURVEY

76%
consider their shop 

a business
2014 ETSY SELLER SURVEY
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Passionate and Loyal Business Owners
30%

focus on their 
creative businesses as 
their sole occupation

2014 ETSY SELLER SURVEY

65%
started their Etsy
shop as a way to 

supplement income
2014 ETSY SELLER SURVEY

79%
started their Easy 

shop as an outlet for 
creativity

2014 ETSY SELLER SURVEY
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Engaged and Thoughtful Buyer Base

25M
active buyers

AS OF MARCH 31, 2016

87%
of Etsy buyers

are women
2014 ETSY BUYER SURVEY

92%
of buyers agree Etsy 

offers products they can't 
find elsewhere

2014 ETSY BUYER SURVEY
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AI in E-commerce
AI Challenges

For Buyers

• How to choose unique and satisfied products among millions?
How to lead and guide buyers to discover products that they wouldn't buy at the first place?
How to recommend appropriate products for different occasions? 

For Sellers

• How to reach larger audience and potential buyers?
How to run advertising campaign more effectively?
How to communicate with buyers through different channels?

For Platform

• How to build a healthy platform?
How to speed-up buyer and seller communication?



AI in E-commerce
AI Challenges

• Search and Discovery
Query Modeling
User Intent Modeling
Learning to Rank

• Personalization and Recommendation
User Profiling
Item Modeling
Recommender Ranking

• Computational Advertising
Click-Through Rate Modeling
Conversion Rate Modeling
Bid Optimization



AI in E-commerce

AI in E-commerce at Etsy

• Multi-modal Deep-learning based Search Solution (KDD 2016)

• Probabilistic Graphical Model based Personalization Recommendation (KDD 2014)

• Ensemble Learning based CTR Prediction Solution (AdKDD 2017/KDD 2017)



Questions


