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Motivation

*Technical* Challenges

Multi-facet data
Large scale
Incorporate other research advances
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Temporal Dynamics + Multiple Sources
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Motivation

Interesting Questions

Are here any common topics among multiple media
sources?

How can we find them, automatically?
Are there transferred from one source to another?

[Zhao et al., ECIR 2011]
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Applications

Data Visualization
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Motivation

Goal

identify common/local topics from multiple streams
characterize their temporal dynamics

*principled way*
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Our Proposed Model

Our Approach

Decompose

A
l \

o

Introduce common topics & local topics Introduce temporal dependent priors
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Handling Multiple Sources

Basic Intuitions

Some topics are shared.
Tsunami, Super bowl, NBA...

Some topics are specific to a certain stream.
Local news, Personal opinions...

Each stream is @ mixture of them.
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Handling Multiple Sources

Generative Process Summary:

Per-stream
Global/Local Preference Prior
Topic Prior
Language Model
Per-document
Global/Local Preference
Topic proportion
Per-token
Global/Local Choice
Topic Choice
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Temporal Modeling

Intuitions

Markovian Assumption
[Blei and Lafferty, ICML 2007]
'Wang et al., UAI 2008]

'Wei et al., IJCAI 2007]
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Temporal Modeling

Intuitions

Use a function to characterize the changes of topic
proportionsover time

[Wang and McCallum, KDD 2006]
[Yin et al., ICDM 2011]
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Temporal Modeling

Intuitions

Use a function to characterize the changes of topic
proportionsover time

At certain time t, we will have higher prior probability to
choose some
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Temporal Modeling

Assumptions

Each topic only has one peak
All topics are “trending”

Yes, it's naive & simplified & unrealistic...
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Temporal Modeling

Temporal Function

Ot | = A,'gtjuk exp(—L;gt)

[Yang and Leskovec, WSDM 2011] [Leskovec et al., KDD 2009]
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Temporal Modeling

Temporal Function
Ot | = A;gtjuk exp(—L;gt)
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Temporal Modeling

Overall Algorithm
EM-Style Algorithm
Gibbs Sampling in E-step
Functional Optimization in M-step
Non-linear Least Square fit
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Temporal Modeling

Experiments & Conclusions
News & Tweets
233,488 News articles
1,736,350 Tweets
720 hours in May, 2010
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Temporal Modeling

Experiments & Conclusions
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Temporal Modeling

Experiments & Conclusions
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Temporal Modeling

Experiments & Conclusions
Case Study on A Common Topic “Kentucky Derby”

Select a common topic which ranks the following terms
high:
“derby”, “race”, “borel”, “kentucky” and “horse”

Tracking temporal dynamics of a topic
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Temporal Modeling

Experiments & Conclusions
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Temporal Dynamics & Geographical Language Variations

Conclusion

A framework for modeling temporal dynamics for
multiple sources.

*Principled* way to tackle the problem.
Bridge topic modeling & Information cascading.



Temporal Dynamics & Geographical Language Variations

Geographical Language Variations
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Modeling Geographical Language Variations

Interesting Questions

How is information created and shared in different
geographic locations? What is the inherent
geographic variability of content?

What are the spatial and linguistic characteristics of
people? How does this vary across regions?

Can we discover patterns in users’ usage of micro-
blogging services?
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Interesting Questions

How is information created and shared in different
geographic locations? What is the inherent
geographic variability of content?

What are the spatial and linguistic characteristics of
people? How does this vary across regions?

Can we discover patterns in users’ usage of micro-
blogging services?

Can we predict user location from tweets?
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Applications

Behavioral targeting and user modeling
! ¥ ty j !
t Ly

Better localinformationfiltering
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Technical Challenges
Tweets

noisy and short (140 characters)
Only 1% of tweets geo-tagged

Can we predict locations for non-tagged tweets?
Many intuitions to be combined

Background, regional language models, topics
Personal preferences, regional preferences...
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Can we really infer locations for a tweet?
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Travel/airport background SE airport area
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Delayed again at the TSE check point and
might miss my flight. way to go SF

Travel/airport background SFO

SF
SFO
San

landed
flight
delay

Francisco
TSE airport
Gate

terminal
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Can we always do that?




Modeling Geographical Language Variations




Modeling Geographical Language Variations

Life is good Feeling great today

Daily life background

life
feeling
good

today
morning
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If we know something extra about the
context and user location preferences,
perhaps we can do better than random

guessing!
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Previous work
Simple regional language models

No factorization
No personal preferences
Complicatedinference algorithms
Usually two step process
Fails to learn coherent regions
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Our Proposed Model
Experiments
Conclusions
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A novel probabilistic model considers
Regional language models
Global topics

Personal preferences
Sparse modeling + Bayesian treatment

An efficientinference algorithm
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Basic Intuition
Regions
Topics
Users

Tweets
The generative process

Intuition
Glory details
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Basic Intuition: Region

Must be coherent
There is enough trafficin it

Affects the way we write tweets
Has preference over what topic discussed
Specific keywords

Area over the map

Example
An airport
A park
A mall
A city
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Basic Intuition: Topic

Classify the content of the tweet
Might not tell us the location
Puts a distribution over words
Examples

Sports

Politics

Travel

Daily life, etc
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Basic Intuition: User

Has preferences over locations

Where he usually spends his/her time
Has preference over topics

What he tweets about



Modeling Geographical Language Variations

Basic Intuition: Tweet

Written by a given user

At a specific location (region)
Depends on the user

About a specific topic
Depends on

What the user talks about
What is being discussed at this location

Composed of a from
Topic + location + background language models
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The Model

The generative process
Intuitive explanation

Glory details
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How a tweet is being generated?

Pick a location
Pick a topic
Generate the words



Modeling Geographical Language Variations
How a tweet is being generated?

Preferences over regions
Regions are unsupervised
Just an area over the map

Preference over topics:
What he likes to talk about
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How a tweet is being generated?

Prior over regions

Q I User regions
11Tl

User topics Pick a region Region topics
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Topic Generate tweet Region LM

Background LM
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How a tweet is being generated?

Prior over regions

3 I User regions
User topi
sertopics I Pick a region \ Region topics

I I l Il Pick a topic II

\l4

I Generate tweet Region LM

r

Background LM
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Discrete Additive Models

Switch-based models
Normalized distributions
Pick one distribution

Sample from it
SAGE [Eisenstein et. al, 2011]

Un-normalized distribution

Log frequencies
Add them all together
Exponentiate and sample
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SAGE

An Additive model for discrete distributions
Discrete distribution via natural parameters

Example:
p(v|p) = exp (¢, — g(¢)) where g(¢) =1log > exp(¢,)

v

Log-frequency differences
Addition of multiple models
Example:

P(v|¢y. ¢, ¢,) = p(v|dy + ¢, + &)



Modeling Geographical Language Variations

SAGE

Use SAGE to replace “switch” variables to enable us
incorporate multiple sources in different levels of our
model easily

Language models
Example: background, regional, global...

User preferences
Example: global, regional, personal...
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SAGE

Prior over regions

3 I User regions
User topi
sertopics I Pick a region \ Region topics

I I l Il Pick a topic II

\l4

I Generate tweet Region LM

r

Background LM
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Recap

Generative Process

Generate
Location

Select

Region Select Generate

Topic Words

Sparse Modeling
L, regularization (Laplace priors)
Geographical Modeling

Bayesian treatment
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Inference Algorithm

A variant of Monte Carlo EM

“E-Step”: Sample latent discrete variables
"M-step”: Update all model parameters

Sparse update of gradients
L, reqularization: ISTA algorithm
Initialize regions with K-means algorithm
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Experiments

Dataset
Twitter data

Randomly sample 1,000 users
All tweets from Jan 2011 to May 2011

573,203 distinct tweets
Twitter geographical data

Locations + Twitter Places
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Experiments

Location Prediction
Metric

average error distance
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Experiments

Location Prediction
Baselines
[Yin et al. WWW 2011] paper

PLSA formalism
No personalization

Our model without g ,user  gand guser

SimilartoYin et al.’s formalism but SAGE model

Our model without #»™ and guser
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Location Prediction
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Bayesian Treatment

160 I I | | | I - |
=T opics
155 == Topics+Region .
. I 5|:| A : & & & B -:'vlllrudu!l . _.
[ - Topics(Bayesian)
EME- | =Topics+Region(Bayesian)-
- Full Model{Bayesian
S 140} \\V—o\‘ (ayesiam)
LLI ¥
@ 135 {
i
i —
@ 130 |
=
= 125t N 1
120 =
115

] ] ] ] ] ] ] ] ]
0 200 400 600 800 1000 1200 1400 1600 1800 2000
The number of latent regions



Modeling Geographical Language Variations

Number of Topics
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Number of Regions

= Topics
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Experiments (Public Data)

10 494 479 501 540.60
20 494 479 501 522.18
4,0 494 479 501 513.06
60 494 479 501 507.37
80 494 479 501 499.42
100 494 479 501 498.94

[1] Eisenstein et al. EMNLP 2010.
[2] Wing andJ. Baldridge. ACL 2011.
[3] Eisenstein, Ahmed, Xing ICML 2011.

481.58
446.03
414.95
410.09
408.38

407.78

449.45

420.83

395-13
380.04
374-01

372-99
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Error Analysis
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Global and local topics

Entertainments

lady bieber album music beats artist video listen
itunes apple produced movies #bieber lol new songs
Sports

yvankees match nba football giants wow win winner game
weekend horse #nba

Politics

obama election middle east china uprising egypt russian
tunisia #egypt afghanistan people eu

Location with Top Ranked Terms

United States->New York->Brooklyn

brooklyn ave flatbush avenue mta prospect 5th #brooklyn spotlight carroll bushwick museum broadway madison
vanderbilt coney slope eastern subway new york pkwy #viernesnayobon #mets otsego greenwich starbucks

United States->California->San Francisco

sfo francisco san airport international millbrae terminal flight burlingame bart mateo boarding bayshore telecommute
landed heading bay airlines united bound flying #sfo camino groupon caltrain moon tsa baggage california engineer valley

United States->Pennsylvania->Philadelphia

philadelphia #philadelphia phl #jobs market others #job street philly walnut septa chestnut the cherry
sansom arch spruce citizens locust btw temple pennsylvania rittenhouse passyunk bitlyetq7a6 bookrenters pike international

United Kingdom->England->London

winds lhr hounslow terminal the cloudy mph ickenham bath heathrow temperature airport car only airways uxbridge sun
splendid fair london british lounge tothers harmondsworth speedbird whens for stars day flight dominos navigation brunel

Australia->New South Wales->Sydney

sydney #sydney bondi george street mascot domestic syd surry station cnr platforms harbour darlinghurst qantas hoteloxford
eddy haymarket terminal wales australia chalmers uts pitt #marketing junction darling centre #-citijobs citigroup druitt
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Conclusions

Probabilistic model for geographical
information

Regional variations

Personal preferences
Effective inference algorithm
Best location prediction
Discriminatively learned language models
Future work
Hierarchical model
Hash tags
Temporal location model
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Handling Multiple Sources

Generative Process

1. For all common topics /., draw ¢ () ~ Dir(5?)
2. For a particular stream s

(a) For all local topics 1, draw &%) ~ Dir(5))
(b) For each document d in s
. Draw Bernoulli parameter 75 4 ~ Beta(vs o), ’yﬁ.c) )
11. Draw 9{(1, )~ Dir(cs)
iii. Draw 6" ~ Dir(av..)
For each word position z in document d
A. Draw x4; ~ Bernoulli(7)s 4)

B. Draw a topic z4; ~ Multin(nnjal(ﬁ("””)

C. Draw a word w,; ~ Multinomial (o f“))
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Handling Multiple Sources

Approximate Inference

Gibbs Sampling

plrg; = 8,24; =1)

Cd,s—i T Vs Mg ,—q T Oz Nz w—i T "}ELSJ
Ng+v9s+7.—1 Zz{—:TS Mg i + ZL Nw—i + _:'Lifif)

plrg; =c¢,zq; = 1)
Cd.c—i + Ve Mg »—i + Oz My w—i T+ ;ﬁ.ﬁf}
Natvs+ve =12 er, Mdz—itaz SV on, .+ By
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Temporal Modeling

Temporal Function

V(t+1) =cf[V(£)]d(t)

V(t): volume of the story
f(v): afunction of volume, encode “popularity”
o(t): a function of time, encode “decay”
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Temporal Modeling
Temporal Function

For some choices of function fand o, we can analytically
solve volume V(t):

Ay tMr exp(—Lt)
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Temporal Modeling

Overall Algorithm

initialize Gibbs Sampler
while not converge do
E-step
For all documents in all text streams, update topic assignments using
Equation (1)
M-step
Update «, 3 and ~ values through the method introduced in [16]
for each all local and common topics do
1) Fit “Gaussian™ function to « values
2) Fit “Temporal Gamma™ function by using the parameters from
the previous step
3) Re-calculate « values for topic k& by using fitted function
end for
end while
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Hashtag

Top Terms of Mapped Topic

[a] Hashtag Mapping for LDA model

#mothersday family home life children mother son friends
##memorialday event june call center community club park
#£bp oil gulf spill coast mexico gas drilling
#kentuckyderby race car track kentucky win top cars

#gaga & #justinbieber

justin lady super try bieber ider rio gaga jonas

[b] Hashtag Mapping for Temporal Collection model

#mothersday family children day home life church mother
##memorialday memorial event day june community center

#bp oil gulf spill coast drilling mexico water louisiana
#kentuckyderby derby race borel kentucky horse super

#gaga & #justinbieber

bieber music video song gaga album lady
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Generative Process: Detalls

Notations
Symbol | Size Usage
1) - : : : :
n 1 x R | global region distribution
user : SRR
U x R | user-dependent region distribution
0 _ . : . .
6 I x K | global topic distribution
) . . . . .
5" R x K | region-dependent topic distribution
e U x K | user-dependent topic distribution
fbﬂ 1 xV | global term distribution
PH5-C R x V | region-dependent term distribution
I1 K x V | a global topic matrix
2 . .
7 R mean location of a latent region
D 9 . . - .
> R covariance matrix of a latent region
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The Graphical Model

QPQ
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The Graphical Model
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Region Selection
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Region Selection

Step-by-Step
Users tend to appear in a handful geographical
locations.

P (""|”?D- T?umr) — p ('?°|TID n ﬂllﬁiﬂ‘l‘)

14 L
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| ocation Generation

geeo

e
=
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| ocation Generation

Once aregion is selected, locations can be
generated.

la ~N(p,.,2.).
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Topic Selection
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Topic Selection

Topics have different chances to be discussed in
different regions by different users

p (Emﬂ__ guser. g%“?ﬂ) —p (3|9? | guser | H%ﬁﬂ)

i, ]
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Word Generation
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Word Generation

Words used in a tweet depend on both the location
and topic of the tweet.

(“l Cb q{);j,LU Hf) _ ( {lfﬁ (ﬁ}h{“u d)
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Sparse Modeling

Laplace Priors

Sparsity results in
predictive models
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Bayesian treatment

Prior distributions over mean and covariance matrix
Jeffery prior

p ~ Unif.
P(X) x 2|2,

Penalize large regions

We want region to be predictive as much as the data supports



