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Problems 
•  need to know all the keywords beforehand 
•  whether they are thematically related or not? 

•  based on historical data, is it possible to do 
prediction? 
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Related Work 
•  temporal topic models 

–  general-purpose models 
–  hard to evaluate 
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Related Work 
evaluation of temporal topic models 

Temporal Perplexity 
[Blei & Lafferty, 2006] [Nallapati et al., 2007] [Wang et al., 2008] 
[Wang et al., 2009] [Wang et al., 2010] [Ahmed et al., 2010] [Iwata et 
al., 2010] [N. Kawamae et al., 2010] 

Timestamp Prediction [Wang et al., 2006] [Wang et al., 2008] [N. Kawamae et al., 2010] 

Classification/Clustering [Zhang et al., 2010] 

Ad-hoc [Wang et al., 2006] [Wang et al., 2009] [Zhang et al., 2010] 
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Problem Definition 
Input: 

•  text documents, segmented into time epochs 
Output: 

•  cluster terms 
•  track term volumes 
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Our Approach 
 

two sub-tasks: 
•  cluster terms – temporal topic models 
•  tracking volumes – linear regression 

•  combine two tasks 
•  reinforce with each other 
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Term Volume Tracking 
•  topics as latent features 
•  term volumes as response 

•  independence assumption 
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Incorporate Term Volumes with LDA 
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Variational Inference 
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Initialize β randomly. 
while relative improvement in L > 0.00001 do 
 “E step”: 
 for t = 1 to T do 
      for i = 1 to D do 
           Update λd 
           Update ϕd 
 “M Step”: 
 for v = 1 to V do 
           Update πv 
           Update σv 
 for t = 1 to T do 
      Update βt by using Conjugate Gradient 

Prediction: 
state-space model’s common practice 



Experiments 
–  NIPS dataset: 

4,360 papers  with 38,029 distinct terms, 24 years. 

–  ACL dataset: 
14,590 papers with 74,189 distinct terms, 37 years. 

–  Metric: 
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•  Baselines 
–  Univariate Autoregressive Model AR(p): 

 

–  Multivariate Autoregressive Model MAR(p): 
 

– LDA 
– Dynamic Topic Model 

[Blei & Lafferty, 2006] 
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Conclusion & Future work 
•  clustering terms + tracking terms 
•  topic modeling + state-space model 
   + supervised learning 
•  latent features help prediction 

•  explore other temporal models 
(see [Hong et al. 2011]) 

•  capture correlations between terms 
•  explore more efficient inference algorithms 
 

 
 



Thank you! 
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Liangjie Hong 
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Variational Inference with Kalman Filter 
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Variational Inference 
 

In variational inference, we consider a simplified graphical 
model with variational parameters γ, φ and minimize the KL 
Divergence between the variational and posterior 
distributions. 

 



•  Variational Inference with Kalman Filter 
– State-space Model 

– Two basic operations: 
•  Smoothing 
 
•  Filtering 
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•  Variational Inference with Kalman Filter 

 
The variational parameters are: 

–  Dirichlet 
–  Multinomial   
–  “Observations” for Kalman Filter 
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