

Liangjie Hong*, Dawei Yin*, Jian Guo§, Brian D. Davison*

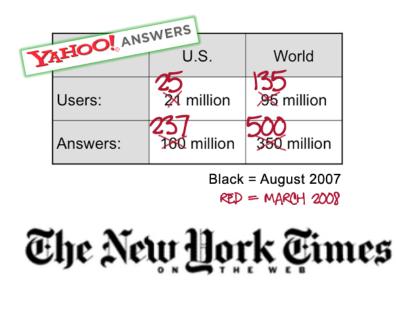
Dept. of Computer Science and Engineering, Lehigh University, Bethlehem, PA, USA * Dept. of Statistics, University of Michigan, Ann Arbor, MI, USA

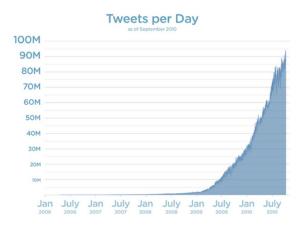
Outline

- motivation
- related work
- our model
- experiments
- conclusion & future work

Motivation

- ever-growing datasets
- "topics" or "interests" drift over time



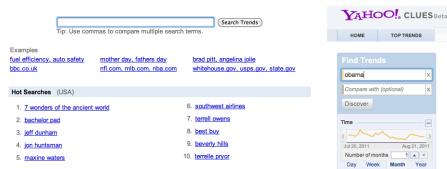


Motivation

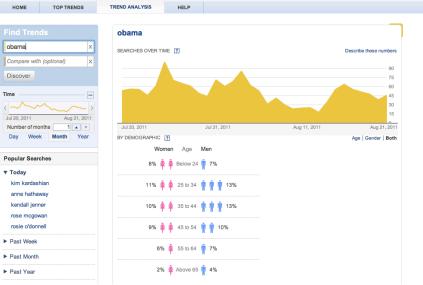
- track the popularity of "topics"
- understand correlations between terms

Motivation

- track the popularity of "topics"
- understand correlations between terms



Google



Web Search

KDD 2011

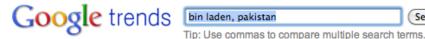
tracking might be difficult ...

Searches Websites

- Scale is based on the average worldwide traffic of bin laden in 2011. Learn more
- An improvement to our geographical assignment was applied retroactively from 1/1/2011. Learn more

bin laden	1.00								
Search Volume index		C					Google Trends	Α	Bin Laden threatens France News24 - Jan 21 2011
20.0		Λ						В	Gaddafi blames bin Laden for protests TVNZ - Feb 24 2011
10.0		Ц						С	Osama bin Laden Killed WebMD - May 2 2011
			D	E				D	Bin Laden widow to return to Yemen News24 - Jun 24 2011
News reference volume	Apr 2011	1	Jul 2011	1	Oct 20	011	1 1	E	White House rejects claim about bin Laden raid film Chicago Tribune - Aug 11 2011
0		\bigwedge							More news results »
Rank by bin laden	\$				· · · · ·				

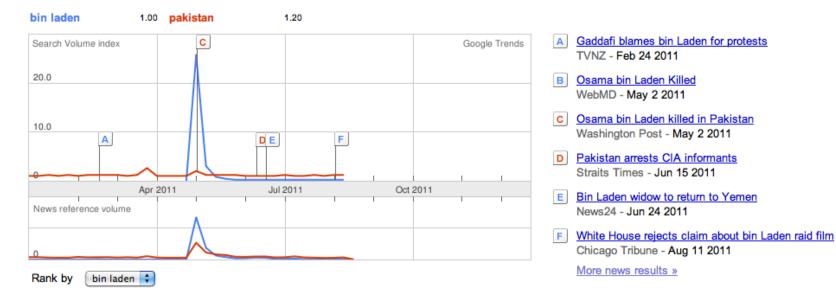
tracking might be difficult ...



Search Trends

Searches Websites

- Scale is based on the average worldwide traffic of bin laden in 2011. Learn more
- An improvement to our geographical assignment was applied retroactively from 1/1/2011. Learn more



tracking	might	be	difficult	
----------	-------	----	-----------	--

Google trends

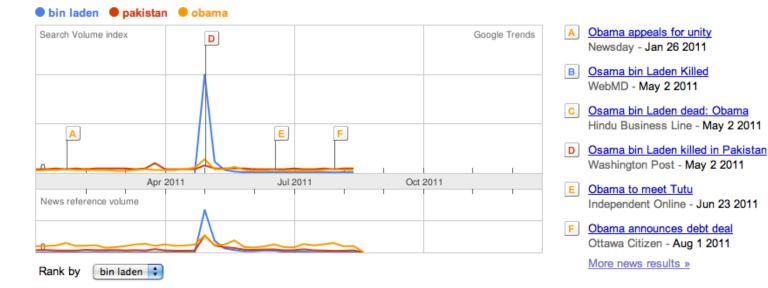
bin laden, pakistan, obama

(Search Trends)

Searches Websites

An improvement to our geographical assignment was applied retroactively from 1/1/2011. Learn more

Tip: Use commas to compare multiple search terms.



Problems

- need to know all the keywords beforehand
- whether they are thematically related or not?

Problems

- need to know all the keywords beforehand
- whether they are thematically related or not?
- based on historical data, is it possible to do prediction?

Related Work

• temporal topic models

Related Work

- temporal topic models
 - general-purpose models
 - hard to evaluate

Related Work evaluation of temporal topic models

Temporal Perplexity	[Blei & Lafferty, 2006] [Nallapati et al., 2007] [Wang et al., 2008] [Wang et al., 2009] [Wang et al., 2010] [Ahmed et al., 2010] [Iwata et al., 2010] [N. Kawamae et al., 2010]				
Timestamp Prediction	[Wang et al., 2006] [Wang et al., 2008] [N. Kawamae et al., 2010]				
Classification/Clustering	[Zhang et al., 2010]				
Ad-hoc	[Wang et al., 2006] [Wang et al., 2009] [Zhang et al., 2010]				

Problem Definition

Input:

• text documents, segmented into time epochs

Output:

- cluster terms
- track term volumes

Our Approach

two sub-tasks:

- cluster terms temporal topic models
- tracking volumes linear regression

Our Approach

two sub-tasks:

- cluster terms temporal topic models
- tracking volumes linear regression
- combine two tasks
- reinforce with each other

Input:

- text documents, segmented into time epochs
 Output:
 - cluster terms topics (distribution over terms)
 - track term volumes volume regression

Input:

- text documents, segmented into time epochs
 Output:
 - cluster terms topics (distribution over terms)
 - track term volumes volume regression

Term Volume Tracking

- topics as latent features
- term volumes as response

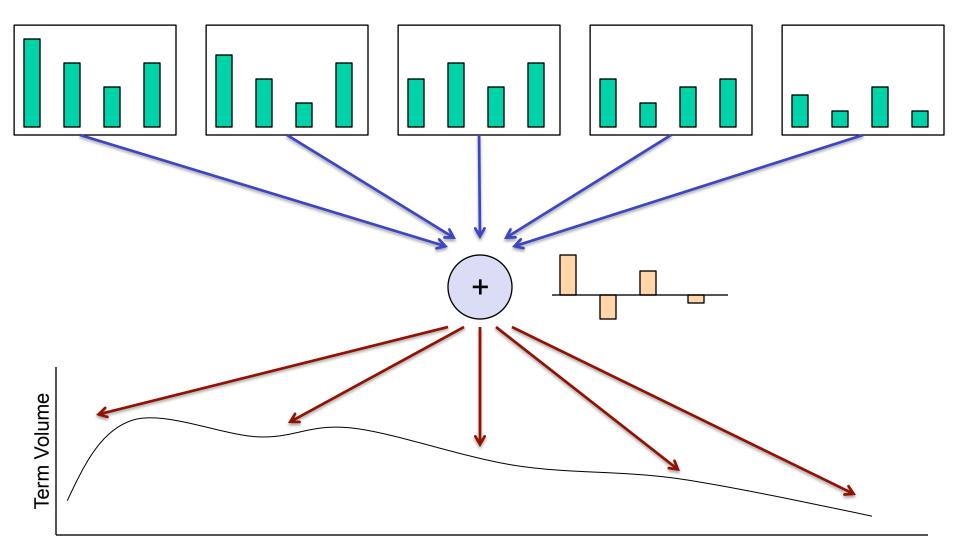
$$Y_{v}^{(t)} = \sum_{k=0}^{K} \pi_{(v,k)} \beta_{(k,v)}^{(t)} + \epsilon_{v}$$

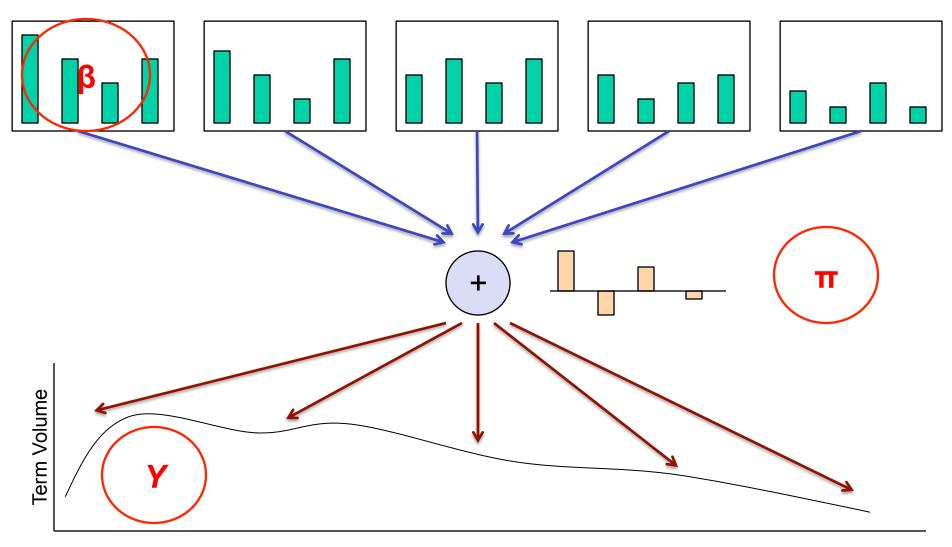
Term Volume Tracking

- topics as latent features
- term volumes as response

$$Y_{v}^{(t)} = \sum_{k=0}^{K} \pi_{(v,k)} \beta_{(k,v)}^{(t)} + \epsilon_{v}$$

independence assumption





Problem

• How to obtain β over time?

Problem

. . .

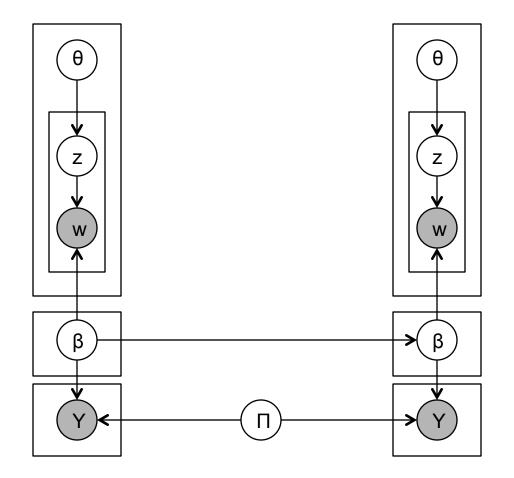
- How to obtain β over time?
 - state-space model
 - special proposed functions
 - linear combination

Problem

. . .

- How to obtain β over time?
 - state-space model
 - special proposed functions
 - linear combination

Incorporate Term Volumes with LDA



Incorporate Term Volumes with LDA

- 1. For each topic k in K: Draw topics $\beta_k^{(t)} | \beta_k^{(t-1)} \sim \mathcal{N}(\beta_k^{(t-1)}, \delta^2 I).$
- 2. For each term v in V: Draw term volume $Y_v^{(t)} \sim \mathcal{N}\left(\pi_v^T \beta_{(*,v)}^{(t)}, \sigma^2\right)$.
- 3. For each document d in time epoch t:
 - (a) Draw $\theta_d \sim \text{Dir}(\alpha)$
 - (b) For each word n:
 - i. Draw $z_{(d,n)} \sim \text{Multi}(\theta)$.
 - ii. Draw $w_{(d,n)} \sim \text{Multi}\left(\pi(\beta_z^{(t)})\right)$

Approximate Inference Obtain

- per document: θ
- per word: z
- per time epoch, per topic: β
- per word: π

Approximate Inference Obtain

- per document: θ
- per word: z
- per time epoch, per topic: β
- per word: π
- Gibbs Sampling
- Variational Inference

Approximate Inference Obtain

- per document: θ
- per word: z
- per time epoch, per topic: β
- per word: π
- Gibbs Sampling
- Variational Inference

Variational Inference

```
Initialize \beta randomly.

while relative improvement in L > 0.00001 do

"E step":

for t = 1 to T do

for i = 1 to D do

Update \lambda_d

Update \phi_d

"M Step":

for v = 1 to V do

Update \pi_v

Update \sigma_v

for t = 1 to T do

Update \beta_t by using Conjugate Gradient
```

Prediction: state-space model's common practice

Experiments

- NIPS dataset:
 - 4,360 papers with 38,029 distinct terms, 24 years.
- ACL dataset:

14,590 papers with 74,189 distinct terms, 37 years.

– Metric:

$$\text{RMSE}_t = \sqrt{\frac{1}{V} \sum_{v} \left(\hat{Y}_v^{(t)} - Y_v^{(t)} \right)^2}$$

- Baselines
 - Univariate Autoregressive Model AR(p):

$$X_t = w + \sum_{k=1}^p \pi_k X_{t-k}$$

Multivariate Autoregressive Model MAR(p):

$$\mathbf{X}_t = \mathbf{w} + \sum_{k=1}^p \mathbf{A}_k \mathbf{X}_{t-k}$$

- LDA
- Dynamic Topic Model [Blei & Lafferty, 2006]

- Baselines
 - Univariate Autoregressive Model AR(p):

$$X_t = w + \sum_{k=1}^p \pi_k X_{t-k}$$

Multivariate Autoregressive Model MAR(p):

$$\mathbf{X}_t = \mathbf{w} + \sum_{k=1}^p \mathbf{A}_k \mathbf{X}_{t-k}$$

- LDA
- Dynamic Topic Model [Blei & Lafferty, 2006]

Baselines

Table 2: AR model on NIPS dataset

p	2007	2008	2009	Avg.
1	98.57	90.51	99.42	96.17
2	101.72	83.20	91.06	92.00
3	97.66	77.31	97.00	90.39
4	112.83	75.62	95.98	94.81
5	118.10	91.64	108.33	106.03
6	118.65	99.00	108.34	108.66
7	118.76	98.99	117.50	111.75
8	122.73	95.93	116.72	111.79
9	122.55	96.23	115.85	111.54
10	143.17	100.71	124.40	122.76

Baselines

Table 5. AK model on ACL dataset							
p	2005	2006	2007	2008	2009	Avg.	
1	131.85	524.04	39.57	592.91	126.29	282.93	
2	210.74	316.38	106.31	434.15	181.98	249.91	
3	247.73	248.17	104.72	381.84	140.87	224.65	
4	258.74	246.58	114.23	447.71	166.09	246.67	
5	244.41	223.99	53.12	428.17	185.00	226.94	
6	250.49	297.98	42.74	385.26	209.24	237.14	
7	169.25	328.75	51.14	345.98	262.54	231.53	
8	168.54	332.20	51.58	396.08	291.13	247.90	
9	155.96	326.73	47.11	400.96	291.60	244.47	
10	156.59	355.13	49.15	399.28	310.65	254.16	

Table 3: AR model on ACL dataset

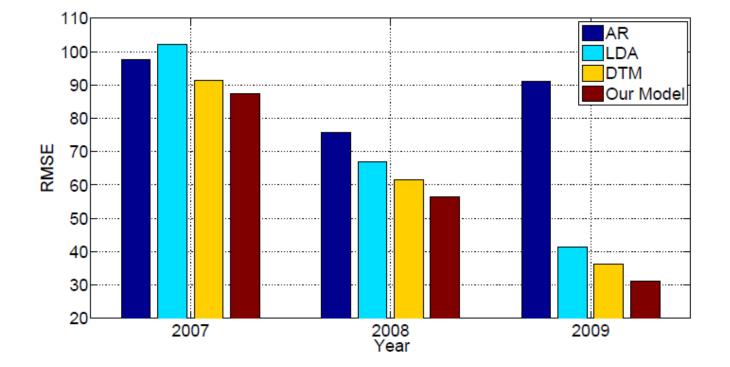


Figure 2: Performance comparison on NIPS dataset. The best RMSE values achieved by each model are shown for the last three years.

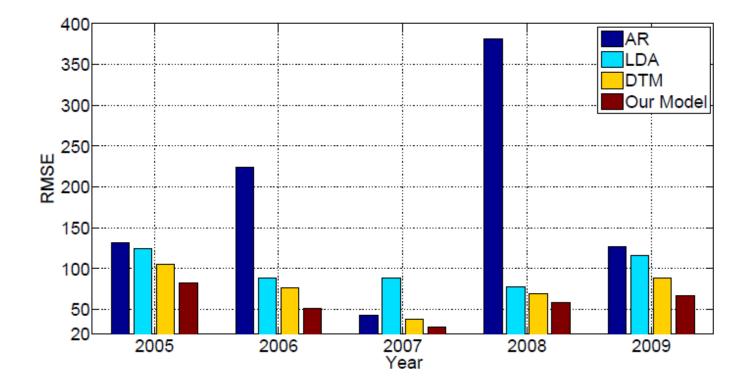


Figure 4: Performance comparison on ACL dataset. The best RMSE values achieved by each model are shown for the last five years.

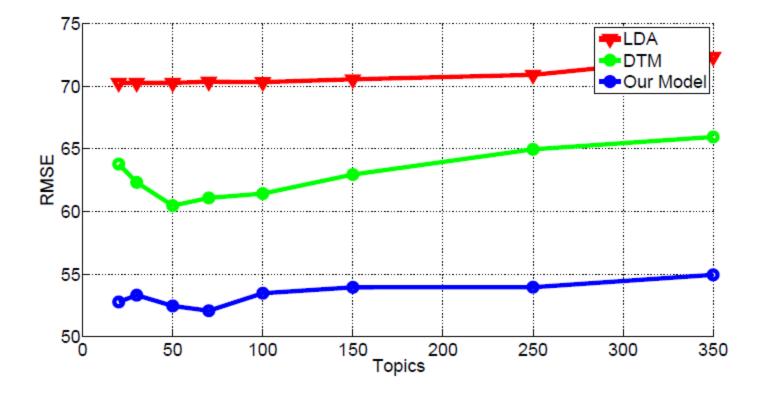


Figure 3: Performance comparison by varying the number of topics K on NIPS dataset.

Conclusion & Future work

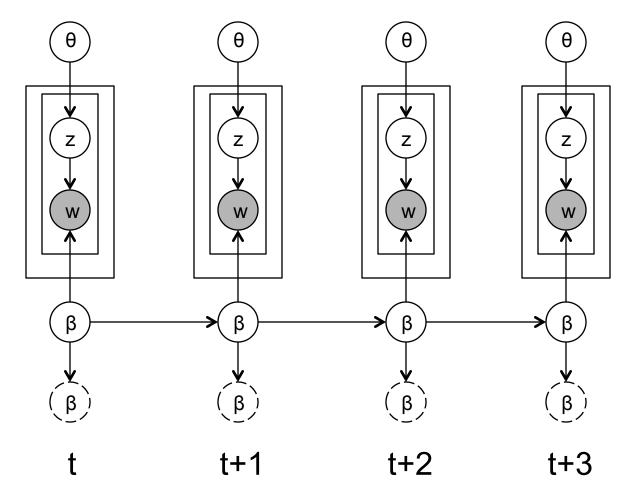
- clustering terms + tracking terms
- topic modeling + state-space model
 - + supervised learning
- latent features help prediction
- explore other temporal models (see [Hong et al. 2011])
- capture correlations between terms
- explore more efficient inference algorithms

Thank you!

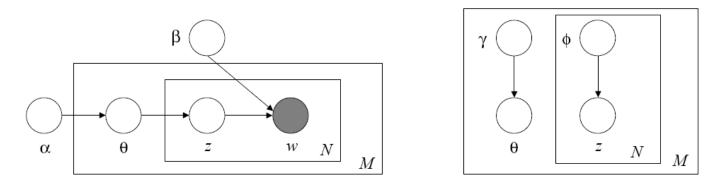
Contact Info:

Liangjie Hong hongliangjie@lehigh.edu WUME Laboratory Computer Science and Engineering Lehigh University Bethlehem, Pennsylvania, USA

Variational Inference with Kalman Filter



Variational Inference



In variational inference, we consider a simplified graphical model with variational parameters γ , ϕ and minimize the KL Divergence between the variational and posterior distributions.

$$(\gamma^*, \phi^*) = \arg \min_{(\gamma, \phi)} KL(q(\theta, z | \gamma, \phi) || p(\theta, z | w, \alpha, \beta))$$

- Variational Inference with Kalman Filter
 State-space Model
 - $$\begin{split} \beta_k^{(t)} \,|\, \beta_k^{(t-1)} &\sim & \mathcal{N}\Big(\beta_k^{(t-1)}, \delta^2 I\Big) \\ \hat{\beta}_k^{(t)} \,|\, \beta_k^{(t)} &\sim & \mathcal{N}\Big(\beta_k^t, \hat{\delta}_t^2 I\Big) \end{split}$$
 - Two basic operations:
 - Smoothing $p(\mathbf{x}_t | \mathbf{y}_1, \cdots, \mathbf{y}_T)$
 - Filtering
 - $p(\mathbf{x}_t|\mathbf{y}_1,\cdots,\mathbf{y}_t)$

Variational Inference with Kalman Filter

$$\begin{aligned} q(\beta_{1:T}, \theta, \mathbf{Z} | \hat{\beta}_{1:T}, \lambda, \Phi) &= \\ \prod_{k=1}^{K} q(\beta_{k}^{1}, \cdots, \beta_{k}^{T} | \hat{\beta}_{k}^{1}, \cdots, \hat{\beta}_{k}^{T}) \times \\ \prod_{t=1}^{T} \left(\prod_{d=1}^{D_{t}} q(\theta_{d} | \lambda_{d}) \prod_{n=1}^{N_{d}} q(z_{(d,n)} | \phi_{(d,n)}) \right) \end{aligned}$$

The variational parameters are:

- Dirichlet λ_d
- Multinomial •
- "Observations" for Kalman Filter $\hat{\beta}$