Notes on Expectation Maximization Algorithm

Liangjie Hong

February 6, 2012

1 Standard EM Algorithm

In general, we are usually interested in the following setting. Let $X = (x_1, x_2, ..., x_n)$ as our observation data points with the parameter θ . We want to find the parameter by maximizing the likelihood function:

$$\hat{\theta} = \arg\max_{\alpha} \log P(X|\theta)$$

However, sometimes, the data points are missing or we need some latent variables to model the data and thus we really want to model the following complete likelihood function:

$$\hat{\theta} = \arg\max_{\theta} \log \int_{h} P(X, h|\theta) \, dh \tag{1}$$

We can further manipulate Equation 1 as follows:

$$\log \int_{h} P(X, h|\theta) dh = \log \int_{h} \frac{P(X, h|\theta)}{q(h)} q(h) dh = \log E_{q} \left[\frac{P(X, h|\theta)}{q(h)} \right]$$
 (2)

where $\int_h q(h) = 1$. By using following Jensen's inequality:

$$E[f(x)] \ge f(E[x])$$

(which is applied to convex functions while \log is a concave function, so we need to flip the inequality) Equation 2 can be re-written as:

$$\log E_q \left[\frac{P(X, h|\theta)}{q(h)} \right] \ge E_q \left[\log \frac{P(X, h|\theta)}{q(h)} \right] = E_q \left[\log P(X, h|\theta) - \log q(h) \right] = G(q, \theta) \tag{3}$$

Note, here we formulate a lower-bound for **each** data point. We want to maximize the bound on current θ . Therefore, the problem is converted to maximize the lower-bound:

$$\hat{q} = \arg\max_{q} G(q, \theta)$$

By applying Lagrange Multiplier, we can obtain the objective function as follows

$$\widetilde{G} = \int_{h} q(h) \log P(X, h|\theta) dh - \int_{h} q(h) \log q(h) dh + \lambda \left(1 - \int_{h} q(h) dh\right)$$

Taking the derivative respect to q(h), we can obtain:

$$\frac{\partial \hat{G}}{\partial q(h)} = \log P(X, h|\theta) - \log q(h) - 1 - \lambda = 0$$

Therefore, we have:

$$\begin{split} e^{\lambda+1}q(h) &= P(X,h|\theta) \Rightarrow \int_h [e^{\lambda+1}q(h)] \, dh = \int_h P(X,h|\theta) \, dh \\ e^{\lambda+1} &= \int_h P(X,h|\theta) \, dh \end{split}$$

Hence:

$$q(h) = \frac{P(X, h|\theta)}{\int_h P(X, h|\theta)} = p(h|X, \theta)$$
(4)

This equation suggests that how E-step is performed: Compute the posterior distribution of the hidden variables, given the data and the current guess of parameter θ .

Another point of view, which also validates that the posterior indeed maximize the likelihood in this case. We start from Equation 3:

$$E_q \left[\log \frac{P(X, h|\theta)}{q(h)} \right] = E_q \left[\log \frac{P(X|\theta)P(h|X, \theta)}{q(h)} \right]$$

$$= E_q \left[\log \frac{P(h|X, \theta)}{q(h)} \right] + E_q [\log P(X|\theta)]$$

$$= -E_q \left[\log \frac{q(h)}{P(h|X, \theta)} \right] + E_q [\log P(X|\theta)]$$

$$= -D(q(h)||P(h|X, \theta)) + \log P(X|\theta)$$

where D is the KL divergence between two distributions. If $q(h) = P(h|X,\theta)$, the distance is minimized and therefore the likelihood is maximized.

The M-step is usually problem-dependent. From Equation 3, we fix q(h) and maximize θ .

2 Generalizations

2.1 Generalized EM

Sometimes, it might be difficult to maximize θ during the M-step. As long as the new θ still increases the lower bound, the algorithm will still converge to a local optimum.

2.2 Variational EM

Variational EM relaxes the requirement that $q(h) = P(h|X,\theta)$ during the E-step. It may be that the true posterior is intractable, so we use a simplified family of q(h) distributions (e.g., fully factorized $q(h) = \sum_i q(h_i)$) to approximate the true posterior distribution.

Acknowledgement

I thank Dr. Yan Fu for detailed discussions. Other similar notes are here: [2, 1, 3].

References

[1] T. Minka. Expectation-maximization as lower bound maximization. Technical report, Microsoft Research Cambridge, 1999.

- [2] R. M. Neal and G. E. Hinton. *A view of the EM algorithm that justifies incremental, sparse, and other variants*, pages 355–368. MIT Press, Cambridge, MA, USA, 1999.
- [3] C. Zhai. A note on the expectation-maximization (em) algorithm. Technical report, UIUC, 2007.