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1 Standard EM Algorithm

In general, we are usually interested in the following setting. Let X = (x1, x2, ..., xn) as our observation data points

with the parameter θ. We want to find the parameter by maximizing the likelihood function:

θ̂ = argmax
θ

logP (X |θ)

However, sometimes, the data points are missing or we need some latent variables to model the data and thus we really

want to model the following complete likelihood fucntion:

θ̂ = argmax
θ

log

∫

h

P (X,h|θ) dh (1)

We can further manipulate Equation 1 as follows:

log

∫

h

P (X,h|θ) dh = log

∫

h

P (X,h|θ)

q(h)
q(h) dh = logEq

[
P (X,h|θ)

q(h)

]
(2)

where
∫
h
q(h) = 1. By using following Jensen’s inequality:

E[f(x)] ≥ f(E[x])

(which is applied to convex functions while log is a concave function, so we need to flip the inequality) Equation 2

can be re-written as:

logEq

[
P (X,h|θ)

q(h)

]
≥ Eq

[
log

P (X,h|θ)

q(h)

]
= Eq [logP (X,h|θ)− log q(h)] = G(q, θ) (3)

Note, here we formulate a lower-bound for each data point. We want to maximize the bound on current θ. Therefore,

the problem is converted to maximize the lower-bound:

q̂ = argmax
q

G(q, θ)

By applying Lagrange Multiplier, we can obtain the objective function as follows

G̃ =

∫

h

q(h) logP (X,h|θ) dh−

∫

h

q(h) log q(h) dh+ λ

(
1−

∫

h

q(h) dh

)

Taking the derivative respect to q(h), we can obtain:

∂G̃

∂q(h)
= logP (X,h|θ)− log q(h)− 1− λ = 0
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Therefore, we have:

eλ+1q(h) = P (X,h|θ) ⇒

∫

h

[eλ+1q(h)] dh =

∫

h

P (X,h|θ) dh

eλ+1 =

∫

h

P (X,h|θ) dh

Hence:

q(h) =
P (X,h|θ)∫
h
P (X,h|θ)

= p(h|X, θ) (4)

This equation suggests that how E-step is performed: Compute the posterior distribution of the hidden variables,

given the data and the current guess of parameter θ.

Another point of view, which also validates that the posterior indeed maximize the likelihood in this case. We

start from Equation 3:

Eq

[
log

P (X,h|θ)

q(h)

]
= Eq

[
log

P (X |θ)P (h|X, θ)

q(h)

]

= Eq

[
log

P (h|X, θ)

q(h)

]
+ Eq[logP (X |θ)]

= −Eq

[
log

q(h)

P (h|X, θ)

]
+ Eq[logP (X |θ)]

= −D(q(h)||P (h|X, θ)) + logP (X |θ)

where D is the KL divergence between two distributions. If q(h) = P (h|X, θ), the distance is minimized and

therefore the likelihood is maximized.

The M-step is usually problem-dependent. From Equation 3, we fix q(h) and maximize θ.

2 Generalizations

2.1 Generalized EM

Sometimes, it might be difficult to maximize θ during the M-step. As long as the new θ still increases the lower bound,

the algorithm will still converge to a local optimum.

2.2 Variational EM

Variational EM relaxes the requirement that q(h) = P (h|X, θ) during the E-step. It may be that the true posterior is

intractable, so we use a simplified family of q(h) distributions (e.g., fully factorized q(h) =
∑

i q(hi)) to approximate

the true posterior distribution.
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