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Main Contributions

v

Explore relationships between PAC learning and VC dimension

» First in the literature

v

Bound sample size of PAC learning by VC dimension

» Infinite case
» Another bound

v

Introduce polynomial learnability, if learning is feasible
» When VC dimension is finite

v

Introduce Occam’s Razor, if learning is not feasible

» When VC dimension is infinite
» Prefer simpler hypothesis
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Basic Setting & Notations

» A dataset: X

1. all possible data items, usually countably infinite
2. distributed according to P
» A concept class: C
1. has finite/infinite number of concept c;
2. each ¢; partitions the dataset into two parts: 1 and O
3. unknown and to be learned
» A hypothesis space: H
1. usually in the same space of C
2. elements in H are called hypotheses
3. our approximation to C
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Basic Setting & Notations (cont’d)

> A sample of size m is
1. choose m data items from X
2. choose ¢ from C:
Example: sam,(¥) = (< x1,1.(x1) >, , < X, Lo () >)
» Sample space of C: S¢
» Learning algorithms: Ac g

1. all functions A : S¢ — H
2. aparticular algorithm A generates a h € H
Example: (< xp,5(x1) >, < Xy I (Xm) >)
3. the error of A is defined as:
errorp(h) = Py eplln(xi) # 1. (x;)]
4. consistency
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Notes

» This setting is very different from classical settings.
» No notion of training and testing at all.

» We care about the concept class C.
» A family of problems not a single problem.

» Only about classification problems.
» How about regression, density estimation?
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PAC Learnability and VC Dimension

» PAC learnability (Review)
» Vapnik-Chervonenkis dimension

» Bounding sample size in PAC learning with VC dimension
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PAC Learnability

The motivation of PAC learnability:
» We want A is as accurate as possible:
» errorp(h) is small — errorp(h) < €
» We can make this accuracy confidently:
» P(errorp(h) < €) is large — P(errorp(h) <€) >1-20

» We even want that A works for any P!
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PAC Learnability

Definition:

Let A € Ac y be a learning function for C (with respect to P) with
sample size m(g, §). If A satisfies the condition that given any
€,6 €10,1], P(errorp(h) > €) < 6 for all ¢ € C, we say that C is
uniformly learnable by H under the distribution P.
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PAC Learnability

Definition:
Let A € Ac y be a learning function for C (with respect to P) with
sample size m(g, §). If A satisfies the condition that given any
€,6 €10,1], P(errorp(h) > €) < 6 for all ¢ € C, we say that C is
uniformly learnable by H under the distribution P.

» Sample size m(€,d) is an integer-valued function of € and §.

> A is a learning function only when A is a learning function for C

with all P!

» The smallest m(g, d) is called the sample complexity of A.
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PAC Learnability: Example
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A target concept c is a rectangle.
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PAC Learnability: Example
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PAC Learnability: Example
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Call the learning function defined by this algorithm A.
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PAC Learnability: Example

What is the sample complexity of algorithm A?
» Denote the target region as R
» Denote the learned region as R’
» Define weight w(E) of a region E as: w(E) = [ . P(x)dx
» Define error(R’) as:
error(R') =w(R—FR')
> Goal:

We want to bound error(R’) < € with probability at least 1 — &
after seeing m examples.
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PAC Learnability: Example

RI

Total error is: €.
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PAC Learnability: Example

- T

» Each strip should have error at most §
» Estimate P(w(T) > %)
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PAC Learnability: Example

» Letw(T}) = %.
» No points in T} appear in the sample. (why?)
» The probability of a point falls outside 7} = 1 — £.
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PAC Learnability: Example

v

The whole sample is outside of 77: [I — §]™

v

In other words, P(w(77) > %) is at most [1 — Z]™
» Same analysis applies to four similar strips.

By using union bound P(AUB) < P(A) + P(B):
P(error(R') > €) <4[1-%]" <6

By some algebraic transformations, we can conclude:

v

v

v

4 4
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PAC Learnability: Example

» This applies to any P.
» The sample size m is bounded.

» The growth of m is linear in % and linear in log %.
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PAC Learnability

In general, for any finite concept class |C| < oo, it is learnable and the
learning algorithms simply need to generate consistent hypotheses
with:

1
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Question

How about infinite cardinality of C?

Liangjie Hong 1ih307@cse.lehigh.edu Department of Computer Science & Engineering, Lehigh University



Learnability and the Vapnik-Chervonenkis Dimension

VC Dimension

Definition:

Given a nonempty concept class C and a set of points S € X, IT¢(S)
denotes the set of all subsets of S that can be obtained by intersecting
S with a concept in C:

e(S) ={(I(x1), -, I.(x) : c € C, x; € S}

or we can have I1¢(S) = {SNc: ¢ € C}. Thus, I1¢(S) contains
positive examples of S by all possible c.
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VC Dimension

Definition:
If [II¢(S)| = 2™, then S is considered shattered by C.

In other words, S is shattered by C if C realizes all possible
dichotomies of S.
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Shattering: Example 1

Consider as an example a finite concept class C = {cy, - ,c4}
applied to three instance vectors with the results:
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X1 X2 X3
cg |1 1 1
(&) 0 1 1
cs| 1 0 O
cs |0 0 O
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Shattering: Example 1

Consider as an example a finite concept class C = {cy, - ,c4}
applied to three instance vectors with the results:

X1 X2 X3
cg |1 1 1
(&) 0 1 1
cs| 1 0 O
cs |0 0 O

Then,
» I ({x1}) (shattered)
» IIc({x1,x3}) (shattered)
» IIc({x2,x3}) (not shattered)
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Shattering: Example 2

[-]

all I'sorall 0's single 1 two I's three 1's

Shattering with rectangles
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VC Dimension

Definition:

The VC dimension of C, denoted as VCDim(C), is the cardinality d of
the largest set S shattered by C. If arbitrary large finite sets are
shattered, then VCDim(C) = oo.
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VC Dimension

Notes:

» VCDim(C) is a property for the concept class C

» VCDim(C) of a finite concept class |C| < oo is bounded as
log|C|, because |C| > 24
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Example 1: Intervals of the real line

Let X be the real line and let C be the set of all intervals on X. What is

VCDim(C)?
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Example 1: Intervals of the real line

Let us firstly try d = 2.
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Example 1: Intervals of the real line

Let us firstly try d = 2.

Interval Placement | Labels

—f— 11
—tF 00
B s 10
—tF— 01

How about d = 3?
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Example 1: Intervals of the real line

For d = 3, we cannot generate the label {10 1}!

Therefore, VCDim(C) = 2.
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Example 2: Axes-aligned rectangles in the plane

max X?

max X'

. 1 A4
min X 5" point

min X2
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Example 2: Axes-aligned rectangles in the plane

max X?

max X'

. 1 A4
min X 5" point

min X2

The VCDim(C) = 4.
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Example 3: Convex polygons

Convex polygons
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Example 3: Convex polygons

Convex polygons

The VC dimension is infinite.
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More Conclusions about VC Dimension

» Separating hyperplanes in R": n+ 1.

» Union of a finite number of intervals on the line: oo.
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Bound Sample size with VC dimension

Theorem:
Let C be a nontrivial, well-behaved concept class.

1. Cis uniformly learnable if and only if the VC dimension of C is

finite.
2. If the VC dimension of C is d, where d < oo, then:
2.1 for 0 < € < 1 and sample size at least
max(%log%, i—dlog %)
any consistent function A : S¢ — C is a learning function for C

and
22 forO0<e< % and sample size less than

max(lg—elog%,d(l —2(e(1-6)+ 5)))
no function A : S¢ — H, for any hypothesis space H, is a learning
function for C.
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Bound Sample size with VC dimension

Notes:

» The first part demonstrates an easier way to prove C uniformly
learnable if one can show C has a finite VC dimension.

» The second part is to link sample size m with error €, confident §
and VC dimension.

» Both statements do not require C finite but require VCDim(C)
finite!
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Bound Sample size with VC dimension
Comparing bounds:

» Previous bound: 0(% (log% +log |C|))

» Current bound: O (% <log % + VCDim(C)log %))
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Bound Sample size with VC dimension

Proof Sketch:

» Part 1 is automatically true if Part 2 is true.
> Part 2 is proven by:

» Construct a special P, C and X.
» Cannot find any A to satisfy PAC learnable conditions.
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Once we have sample size m, error € and confident level 6 and model
complexity VCDim(C), what is missing?

Liangjie Hong 1ih307@cse.lehigh.edu Department of Computer Science & Engineering, Lehigh University



Learnability and the Vapnik-Chervonenkis Dimension

Once we have sample size m, error € and confident level 6 and model
complexity VCDim(C), what is missing?

» Computational feasibility
» Polynomial time bound

» Control complexity of learned model
» Occam’s Razor
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Polynomial Learnable

Main ideas:

» Try to define C, is properly polynomial learnable where # is
dimensionality of X.

» Depend on VC dimension of C, grows only polynomially in 7.

> This only happens when C,, has a finite VC dimension.
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Polynomial Learnable

Main ideas:

» Try to define C, is properly polynomial learnable where # is
dimensionality of X.

» Depend on VC dimension of C, grows only polynomially in 7.
> This only happens when C,, has a finite VC dimension.

Redefine PAC learnable by incorporating polynomial time complexity
constraint and VC dimension.
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What if VC dimension is infinite?
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Occam’s Razor

» Define size be a function from C into Z ™.

» Polynomial learnable of C is redefined by adding an additional
bound size(c) for all ¢ € C.

» May not find the simplest hypotheses, but simpler one.

Liangjie Hong 1ih307@cse.lehigh.edu Department of Computer Science & Engineering, Lehigh University



Learnability and the Vapnik-Chervonenkis Dimension

That’s it!

Thank you.
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