

Liangjie Hong lih307@cse.lehigh.edu

Department of Computer Science & Engineering, Lehigh University April 10th, 2012

Overview

PAC Learnability and VC Dimension

PAC Learnability
VC Dimension
Bounding PAC with VC Dimension

Polynomial Learnability and Occam's Razor

Polynomial Learnable Occam's Razor

Main Contributions

- ► Explore relationships between PAC learning and VC dimension
 - First in the literature
- ▶ Bound sample size of PAC learning by VC dimension
 - Infinite case
 - Another bound
- ► Introduce polynomial learnability, if learning is feasible
 - When VC dimension is finite
- ► Introduce Occam's Razor, if learning is not feasible
 - When VC dimension is infinite
 - Prefer simpler hypothesis

Basic Setting & Notations

- ► A dataset: X
 - 1. all possible data items, usually countably infinite
 - 2. distributed according to P
- ► A concept class: C
 - 1. has finite/infinite number of concept c_i
 - 2. each c_i partitions the dataset into two parts: 1 and 0
 - 3. unknown and to be learned
- ▶ A hypothesis space: *H*
 - 1. usually in the same space of C
 - 2. elements in *H* are called *hypotheses*
 - 3. our approximation to C

Basic Setting & Notations (cont'd)

- \triangleright A sample of size m is
 - 1. choose m data items from X
 - 2. choose c from C: Example: $\operatorname{sam}_c(\bar{x}) = (\langle x_1, I_c(x_1) \rangle, \cdots, \langle x_m, I_c(x_m) \rangle)$
- ▶ Sample space of C: S_C
- ▶ Learning algorithms: $A_{C,H}$
 - 1. all functions $A: S_C \to H$
 - 2. a particular algorithm *A* generates a $h \in H$ Example: $(\langle x_1, I_h(x_1) \rangle, \dots, \langle x_m, I_h(x_m) \rangle)$
 - 3. the *error* of *A* is defined as: $error_P(h) = P_{x_i \in P}[I_h(x_i) \neq I_c(x_i)]$
 - 4. consistency

Notes

- ► This setting is very different from classical settings.
 - ▶ No notion of training and testing at all.
- ▶ We care about the concept class *C*.
 - ► A family of problems not a single problem.
- Only about classification problems.
 - ► How about regression, density estimation?

Table of Contents

PAC Learnability and VC Dimension

PAC Learnability
VC Dimension
Bounding PAC with VC Dimension

Polynomial Learnability and Occam's Razor Polynomial Learnable Occam's Razor

PAC Learnability and VC Dimension

- ► PAC learnability (Review)
- Vapnik-Chervonenkis dimension
- ▶ Bounding sample size in PAC learning with VC dimension

PAC Learnability

The motivation of PAC learnability:

- ▶ We want *A* is as accurate as possible:
 - $error_P(h)$ is small $\rightarrow error_P(h) \leq \varepsilon$
- ▶ We can make this accuracy confidently:
 - ▶ $P(error_P(h) \le \varepsilon)$ is large $\rightarrow P(error_P(h) \le \varepsilon) \ge 1 \delta$
- ▶ We even want that *A* works for any *P*!

PAC Learnability

Definition:

Let $A \in A_{C,H}$ be a learning function for C (with respect to P) with sample size $m(\varepsilon, \delta)$. If A satisfies the condition that given any $\varepsilon, \delta \in [0,1]$, $P(error_P(h) > \varepsilon) \leq \delta$ for all $c \in C$, we say that C is uniformly learnable by H under the distribution P.

PAC Learnability

Definition:

Let $A \in A_{C,H}$ be a learning function for C (with respect to P) with sample size $m(\varepsilon, \delta)$. If A satisfies the condition that given any $\varepsilon, \delta \in [0,1]$, $P(error_P(h) > \varepsilon) \leq \delta$ for all $c \in C$, we say that C is uniformly learnable by H under the distribution P.

- ▶ Sample size $m(\varepsilon, \delta)$ is an integer-valued function of ε and δ .
- ► A is a learning function only when A is a learning function for C with all P!
- ▶ The smallest $m(\varepsilon, \delta)$ is called the *sample complexity* of A.

PAC Learnability: Example

A target concept *c* is a rectangle.

PAC Learnability: Example

Call the learning function defined by this algorithm *A*.

PAC Learnability: Example

What is the sample complexity of algorithm *A*?

- ▶ Denote the target region as *R*
- ▶ Denote the learned region as R'
- ▶ Define weight w(E) of a region E as: $w(E) = \int_{x \in E} P(x) dx$
- ▶ Define error(R') as: error(R') = w(R - R')
- ▶ Goal: We want to bound $error(R') \le \varepsilon$ with probability at least 1δ after seeing m examples.

PAC Learnability: Example

Total error is: ε .

- Each strip should have error at most $\frac{\varepsilon}{4}$
- Estimate $P(w(T_1) > \frac{\varepsilon}{4})$

- ▶ No points in T'_1 appear in the sample. (why?)
- ► The probability of a point falls outside $T_1' = 1 \frac{\varepsilon}{4}$.

- ► The whole sample is outside of T_1' : $[1 \frac{\varepsilon}{4}]^m$
- ▶ In other words, $P(w(T_1) > \frac{\varepsilon}{4})$ is at most $[1 \frac{\varepsilon}{4}]^m$
- Same analysis applies to four similar strips.
- ▶ By using union bound $P(A \cup B) \le P(A) + P(B)$:
- $P(error(R') \ge \varepsilon) \le 4[1 \frac{\varepsilon}{4}]^m \le \delta$
- ▶ By some algebraic transformations, we can conclude:

$$m \ge \frac{4}{\varepsilon} \log \frac{4}{\delta}$$

- ightharpoonup This applies to any P.
- ightharpoonup The sample size m is bounded.
- ► The growth of *m* is linear in $\frac{1}{\varepsilon}$ and linear in $\log \frac{1}{\delta}$.

PAC Learnability

In general, for any finite concept class $|C| < \infty$, it is learnable and the learning algorithms simply need to generate consistent hypotheses with:

$$m \ge \frac{1}{\varepsilon} \log \frac{|C|}{\delta}$$

Question

How about infinite cardinality of *C*?

VC Dimension

Definition:

Given a nonempty concept class C and a set of points $S \in X$, $\Pi_C(S)$ denotes the **set** of all subsets of S that can be obtained by intersecting S with a concept in C:

$$\Pi_C(S) = \{ (I_c(x_1), \cdots, I_c(x_m) : c \in C, x_i \in S \}$$

or we can have $\Pi_C(S) = \{S \cap c : c \in C\}$. Thus, $\Pi_C(S)$ contains positive examples of S by all possible c.

VC Dimension

Definition:

If $|\Pi_C(S)| = 2^m$, then *S* is considered shattered by *C*.

In other words, S is shattered by C if C realizes all possible dichotomies of S.

Shattering: Example 1

Consider as an example a finite concept class $C = \{c_1, \dots, c_4\}$ applied to three instance vectors with the results:

	x_1	x_2	x_3
c_1	1	1	1
c_2	0	1	1
c_3	1	0	0
c_4	0	0	0

Shattering: Example 1

Consider as an example a finite concept class $C = \{c_1, \dots, c_4\}$ applied to three instance vectors with the results:

	x_1	x_2	x_3
c_1	1	1	1
c_2	0	1	1
c_3	1	0	0
c_4	0	0	0

Then.

- \blacksquare $\Pi_C(\{x_1\})$ (shattered)
- \blacksquare $\Pi_C(\{x_1,x_3\})$ (shattered)
- \blacksquare $\Pi_C(\{x_2,x_3\})$ (not shattered)

Shattering: Example 2

Shattering with rectangles

VC Dimension

Definition:

The VC dimension of C, denoted as VCDim(C), is the cardinality d of the largest set S shattered by C. If arbitrary large finite sets are shattered, then $VCDim(C) = \infty$.

VC Dimension

Notes:

- ightharpoonup VCDim(C) is a property for the concept class C
- ▶ VCDim(C) of a finite concept class $|C| < \infty$ is bounded as $\log |C|$, because $|C| \ge 2^d$

Example 1: Intervals of the real line

Let X be the real line and let C be the set of **all** intervals on X. What is VCDim(C)?

Example 1: Intervals of the real line

Let us firstly try d = 2.

Example 1: Intervals of the real line

Let us firstly try d = 2.

Interval Placement	Labels
<u> </u>	11
→ • ()	0.0
[-•]• →	10
	0 1

How about d = 3?

Example 1: Intervals of the real line

For d = 3, we cannot generate the label $\{1\ 0\ 1\}$!

Therefore, VCDim(C) = 2.

Example 2: Axes-aligned rectangles in the plane

Example 2: Axes-aligned rectangles in the plane

The VCDim(C) = 4.

Example 3: Convex polygons

Convex polygons

Example 3: Convex polygons

Convex polygons

The VC dimension is infinite.

More Conclusions about VC Dimension

- ▶ Separating hyperplanes in R^n : n+1.
- Union of a finite number of intervals on the line: ∞.

Bound Sample size with VC dimension

Theorem:

Let C be a nontrivial, well-behaved concept class.

- 1. *C* is uniformly learnable if and only if the VC dimension of *C* is finite.
- 2. If the VC dimension of C is d, where $d < \infty$, then:
 - 2.1 for $0 < \varepsilon < 1$ and sample size at least

$$\max\left(\frac{4}{\varepsilon}\log\frac{2}{\delta}, \frac{8d}{\varepsilon}\log\frac{13}{\varepsilon}\right)$$

any consistent function $A: S_C \to C$ is a learning function for C and

2.2 for $0 < \varepsilon < \frac{1}{2}$ and sample size less than

$$\max\left(\frac{1-\varepsilon}{\varepsilon}\log\frac{1}{\delta},d(1-2(\varepsilon(1-\delta)+\delta))\right)$$

no function $A: S_C \to H$, for any hypothesis space H, is a learning function for C.

Bound Sample size with VC dimension

Notes:

- ► The first part demonstrates an easier way to prove *C* uniformly learnable if one can show *C* has a finite VC dimension.
- ► The second part is to link sample size m with error ε , confident δ and VC dimension.
- ▶ Both statements do not require *C* finite but require *VCDim*(*C*) finite!

Bound Sample size with VC dimension

Comparing bounds:

- ▶ Previous bound: $O\left(\frac{1}{\varepsilon}\left(\log\frac{1}{\delta} + \log|C|\right)\right)$
- ► Current bound: $O\left(\frac{1}{\varepsilon}\left(\log\frac{1}{\delta} + VCDim(C)\log\frac{1}{\varepsilon}\right)\right)$

Bound Sample size with VC dimension

Proof Sketch:

- ▶ Part 1 is automatically true if Part 2 is true.
- ▶ Part 2 is proven by:
 - Construct a special P, C and X.
 - ► Cannot find any *A* to satisfy PAC learnable conditions.

Table of Contents

PAC Learnability and VC Dimension
PAC Learnability
VC Dimension
Bounding PAC with VC Dimension

Polynomial Learnability and Occam's Razor

Polynomial Learnable Occam's Razor

Once we have sample size m, error ε and confident level δ and model complexity VCDim(C), what is missing?

Once we have sample size m, error ε and confident level δ and model complexity VCDim(C), what is missing?

- Computational feasibility
 - ▶ Polynomial time bound
- ► Control complexity of learned model
 - Occam's Razor

Polynomial Learnable

Main ideas:

- ▶ Try to define C_n is properly polynomial learnable where n is dimensionality of X.
- \triangleright Depend on VC dimension of C_n grows only polynomially in n.
- ▶ This only happens when C_n has a finite VC dimension.

Polynomial Learnable

Main ideas:

- ▶ Try to define C_n is properly polynomial learnable where n is dimensionality of X.
- ▶ Depend on VC dimension of C_n grows only polynomially in n.
- ▶ This only happens when C_n has a finite VC dimension.

Redefine PAC learnable by incorporating polynomial time complexity constraint and VC dimension.

What if VC dimension is infinite?

Occam's Razor

- ▶ Define **size** be a function from C into \mathbf{Z}^+ .
- ▶ Polynomial learnable of C is redefined by adding an additional bound size(c) for all $c \in C$.
- ▶ May not find the *simplest* hypotheses, but *simpler* one.

That's it!

Thank you.