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Main Contributions

I Explore relationships between PAC learning and VC dimension
I First in the literature

I Bound sample size of PAC learning by VC dimension
I Infinite case
I Another bound

I Introduce polynomial learnability, if learning is feasible
I When VC dimension is finite

I Introduce Occam’s Razor, if learning is not feasible
I When VC dimension is infinite
I Prefer simpler hypothesis
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Basic Setting & Notations

I A dataset: X

1. all possible data items, usually countably infinite
2. distributed according to P

I A concept class: C
1. has finite/infinite number of concept ci
2. each ci partitions the dataset into two parts: 1 and 0
3. unknown and to be learned

I A hypothesis space: H
1. usually in the same space of C
2. elements in H are called hypotheses
3. our approximation to C
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Basic Setting & Notations (cont’d)

I A sample of size m is
1. choose m data items from X
2. choose c from C:

Example: samc(x̄) = (< x1, Ic(x1)>, · · · ,< xm, Ic(xm)>)

I Sample space of C: SC

I Learning algorithms: AC,H

1. all functions A : SC→ H
2. a particular algorithm A generates a h ∈ H

Example: (< x1, Ih(x1)>, · · · ,< xm, Ih(xm)>)
3. the error of A is defined as:

errorP(h) = Pxi∈P[Ih(xi) 6= Ic(xi)]
4. consistency

Liangjie Hong lih307@cse.lehigh.edu Department of Computer Science & Engineering, Lehigh University



Learnability and the Vapnik-Chervonenkis Dimension

Notes

I This setting is very different from classical settings.
I No notion of training and testing at all.

I We care about the concept class C.
I A family of problems not a single problem.

I Only about classification problems.
I How about regression, density estimation?
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PAC Learnability and VC Dimension

I PAC learnability (Review)
I Vapnik-Chervonenkis dimension
I Bounding sample size in PAC learning with VC dimension
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PAC Learnability

The motivation of PAC learnability:
I We want A is as accurate as possible:

I errorP(h) is small→ errorP(h)≤ ε

I We can make this accuracy confidently:
I P(errorP(h)≤ ε) is large→ P(errorP(h)≤ ε)≥ 1−δ

I We even want that A works for any P!
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PAC Learnability

Definition:
Let A ∈ AC,H be a learning function for C (with respect to P) with
sample size m(ε,δ ). If A satisfies the condition that given any
ε,δ ∈ [0,1], P(errorP(h)> ε)≤ δ for all c ∈ C, we say that C is
uniformly learnable by H under the distribution P.

I Sample size m(ε,δ ) is an integer-valued function of ε and δ .
I A is a learning function only when A is a learning function for C

with all P!
I The smallest m(ε,δ ) is called the sample complexity of A.
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PAC Learnability: Example

weight

he
ig

ht

A target concept c is a rectangle.
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PAC Learnability: Example

weight

he
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ht

Call the learning function defined by this algorithm A.
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PAC Learnability: Example

What is the sample complexity of algorithm A?
I Denote the target region as R
I Denote the learned region as R′

I Define weight w(E) of a region E as: w(E) =
∫

x∈E P(x)dx
I Define error(R′) as:

error(R′) = w(R−R′)
I Goal:

We want to bound error(R′)≤ ε with probability at least 1−δ

after seeing m examples.
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PAC Learnability: Example

R

R′

Total error is: ε .
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PAC Learnability: Example

R

R′

T1

I Each strip should have error at most ε

4
I Estimate P(w(T1)>

ε

4 )
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PAC Learnability: Example

R

R′

T1
T ′1

I Let w(T ′1) =
ε

4 .
I No points in T ′1 appear in the sample. (why?)
I The probability of a point falls outside T ′1 = 1− ε

4 .
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PAC Learnability: Example

I The whole sample is outside of T ′1: [1− ε

4 ]
m

I In other words, P(w(T1)>
ε

4 ) is at most [1− ε

4 ]
m

I Same analysis applies to four similar strips.
I By using union bound P(A∪B)≤ P(A)+P(B):
I P(error(R′)≥ ε)≤ 4[1− ε

4 ]
m ≤ δ

I By some algebraic transformations, we can conclude:

m≥ 4
ε

log 4
δ
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PAC Learnability: Example

I This applies to any P.
I The sample size m is bounded.
I The growth of m is linear in 1

ε
and linear in log 1

δ
.
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PAC Learnability

In general, for any finite concept class |C|< ∞, it is learnable and the
learning algorithms simply need to generate consistent hypotheses
with:

m≥ 1
ε

log |C|
δ
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Question

How about infinite cardinality of C?
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VC Dimension

Definition:
Given a nonempty concept class C and a set of points S ∈ X, ΠC(S)
denotes the set of all subsets of S that can be obtained by intersecting
S with a concept in C:

ΠC(S) = {(Ic(x1), · · · , Ic(xm) : c ∈ C, xi ∈ S}

or we can have ΠC(S) = {S∩ c : c ∈ C}. Thus, ΠC(S) contains
positive examples of S by all possible c.

Liangjie Hong lih307@cse.lehigh.edu Department of Computer Science & Engineering, Lehigh University



Learnability and the Vapnik-Chervonenkis Dimension

VC Dimension

Definition:
If |ΠC(S)|= 2m, then S is considered shattered by C.

In other words, S is shattered by C if C realizes all possible
dichotomies of S.
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Shattering: Example 1
Consider as an example a finite concept class C = {c1, · · · ,c4}
applied to three instance vectors with the results:

x1 x2 x3

c1 1 1 1
c2 0 1 1
c3 1 0 0
c4 0 0 0

Then,
I ΠC({x1}) (shattered)
I ΠC({x1,x3}) (shattered)
I ΠC({x2,x3}) (not shattered)
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Shattering: Example 2

Shattering with rectangles
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VC Dimension

Definition:
The VC dimension of C, denoted as VCDim(C), is the cardinality d of
the largest set S shattered by C. If arbitrary large finite sets are
shattered, then VCDim(C) = ∞.
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VC Dimension

Notes:

I VCDim(C) is a property for the concept class C
I VCDim(C) of a finite concept class |C|< ∞ is bounded as

log |C|, because |C| ≥ 2d
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Example 1: Intervals of the real line

Let X be the real line and let C be the set of all intervals on X. What is
VCDim(C)?
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Example 1: Intervals of the real line

Let us firstly try d = 2.

Interval Placement Labels

1 1

0 0

1 0

0 1

How about d = 3?
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Example 1: Intervals of the real line

For d = 3, we cannot generate the label {1 0 1}!

Therefore, VCDim(C) = 2.
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Example 2: Axes-aligned rectangles in the plane

The VCDim(C) = 4.
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Example 3: Convex polygons

Convex polygons

The VC dimension is infinite.
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More Conclusions about VC Dimension

I Separating hyperplanes in Rn: n+1.
I Union of a finite number of intervals on the line: ∞.
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Bound Sample size with VC dimension
Theorem:
Let C be a nontrivial, well-behaved concept class.

1. C is uniformly learnable if and only if the VC dimension of C is
finite.

2. If the VC dimension of C is d, where d < ∞, then:
2.1 for 0 < ε < 1 and sample size at least

max
(

4
ε

log 2
δ
, 8d

ε
log 13

ε

)
any consistent function A : SC→ C is a learning function for C
and

2.2 for 0 < ε < 1
2 and sample size less than

max
(

1−ε

ε
log 1

δ
,d(1−2(ε(1−δ )+δ ))

)
no function A : SC→ H, for any hypothesis space H, is a learning
function for C.
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Bound Sample size with VC dimension

Notes:
I The first part demonstrates an easier way to prove C uniformly

learnable if one can show C has a finite VC dimension.
I The second part is to link sample size m with error ε , confident δ

and VC dimension.
I Both statements do not require C finite but require VCDim(C)

finite!
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Bound Sample size with VC dimension

Comparing bounds:

I Previous bound: O
(

1
ε

(
log 1

δ
+ log |C|

))
I Current bound: O

(
1
ε

(
log 1

δ
+VCDim(C) log 1

ε

))
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Bound Sample size with VC dimension

Proof Sketch:
I Part 1 is automatically true if Part 2 is true.
I Part 2 is proven by:

I Construct a special P, C and X.
I Cannot find any A to satisfy PAC learnable conditions.
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Once we have sample size m, error ε and confident level δ and model
complexity VCDim(C), what is missing?

I Computational feasibility
I Polynomial time bound

I Control complexity of learned model
I Occam’s Razor
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Polynomial Learnable

Main ideas:
I Try to define Cn is properly polynomial learnable where n is

dimensionality of X.
I Depend on VC dimension of Cn grows only polynomially in n.
I This only happens when Cn has a finite VC dimension.

Redefine PAC learnable by incorporating polynomial time complexity
constraint and VC dimension.
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What if VC dimension is infinite?
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Occam’s Razor

I Define size be a function from C into Z+.
I Polynomial learnable of C is redefined by adding an additional

bound size(c) for all c ∈ C.
I May not find the simplest hypotheses, but simpler one.
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That’s it!

Thank you.
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